Abstract:Modular soft robot arms (MSRAs) are composed of multiple independent modules connected in a sequence. Due to their modular structure and high degrees of freedom (DOFs), these modules can simultaneously bend at different angles in various directions, enabling complex deformation. This capability allows MSRAs to perform more intricate tasks than single module robots. However, the modular structure also induces challenges in accurate planning, modeling, and control. Nonlinearity, hysteresis, and gravity complicate the physical model, while the modular structure and increased DOFs further lead to accumulative errors along the sequence. To address these challenges, we propose a flexible task space planning and control strategy for MSRAs, named S2C2A (State to Configuration to Action). Our approach formulates an optimization problem, S2C (State to Configuration planning), which integrates various loss functions and a forward MSRA model to generate configuration trajectories based on target MSRA states. Given the model complexity, we leverage a biLSTM network as the forward model. Subsequently, a configuration controller C2A (Configuration to Action control) is implemented to follow the planned configuration trajectories, leveraging only inaccurate internal sensing feedback. Both a biLSTM network and a physical model are utilized for configuration control. We validated our strategy using a cable-driven MSRA, demonstrating its ability to perform diverse offline tasks such as position control, orientation control, and obstacle avoidance. Furthermore, our strategy endows MSRA with online interaction capability with targets and obstacles. Future work will focus on addressing MSRA challenges, such as developing more accurate physical models and reducing configuration estimation errors along the module sequence.
Abstract:The spatiotemporal data generated by massive sensors in the Internet of Things (IoT) is extremely dynamic, heterogeneous, large scale and time-dependent. It poses great challenges (e.g. accuracy, reliability, and stability) in real-time analysis and decision making for different IoT applications. The complexity of IoT data prevents the common people from gaining a deeper understanding of it. Agentized systems help address the lack of data insight for the common people. We propose a generic framework, namely CityGPT, to facilitate the learning and analysis of IoT time series with an end-to-end paradigm. CityGPT employs three agents to accomplish the spatiotemporal analysis of IoT data. The requirement agent facilitates user inputs based on natural language. Then, the analysis tasks are decomposed into temporal and spatial analysis processes, completed by corresponding data analysis agents (temporal and spatial agents). Finally, the spatiotemporal fusion agent visualizes the system's analysis results by receiving analysis results from data analysis agents and invoking sub-visualization agents, and can provide corresponding textual descriptions based on user demands. To increase the insight for common people using our framework, we have agnentized the framework, facilitated by a large language model (LLM), to increase the data comprehensibility. Our evaluation results on real-world data with different time dependencies show that the CityGPT framework can guarantee robust performance in IoT computing.
Abstract:Soft robot are celebrated for their propensity to enable compliant and complex robot-environment interactions. Soft robotic manipulators, or slender continuum structure robots have the potential to exploit these interactions to enable new exploration and manipulation capabilities and safe human-robot interactions. However, the interactions, or perturbations by external forces cause the soft structure to deform in an infinite degree of freedom (DOF) space. To control such system, reduced order models are needed; typically models consider piecewise sections of constant curvature although external forces often deform the structure out of the constant curvature hypothesis. In this work we perform an analysis of the trade-off between computational treatability and modelling accuracy. We then propose a new kinematic model, the Piecewise Affine Curvature (PAC) which we validate theoretically and experimentally showing that this higher-order model better captures the configuration of a soft continuum body robot when perturbed by the external forces. In comparison to the current state of the art Piecewise Constant Curvature (PCC) model we demonstrate up to 30\% reduction in error for the end position of a soft continuum body robot.