Abstract:Machine unlearning (MUL) focuses on removing the influence of specific subsets of data (such as noisy, poisoned, or privacy-sensitive data) from pretrained models. MUL methods typically rely on specialized forms of fine-tuning. Recent research has shown that data memorization is a key characteristic defining the difficulty of MUL. As a result, novel memorization-based unlearning methods have been developed, demonstrating exceptional performance with respect to unlearning quality, while maintaining high performance for model utility. Alas, these methods depend on knowing the memorization scores of data points and computing said scores is a notoriously time-consuming process. This in turn severely limits the scalability of these solutions and their practical impact for real-world applications. In this work, we tackle these scalability challenges of state-of-the-art memorization-based MUL algorithms using a series of memorization-score proxies. We first analyze the profiles of various proxies and then evaluate the performance of state-of-the-art (memorization-based) MUL algorithms in terms of both accuracy and privacy preservation. Our empirical results show that these proxies can introduce accuracy on par with full memorization-based unlearning while dramatically improving scalability. We view this work as an important step toward scalable and efficient machine unlearning.
Abstract:We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and initiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Abstract:Machine unlearning is the problem of removing the effect of a subset of training data (the ''forget set'') from a trained model without damaging the model's utility e.g. to comply with users' requests to delete their data, or remove mislabeled, poisoned or otherwise problematic data. With unlearning research still being at its infancy, many fundamental open questions exist: Are there interpretable characteristics of forget sets that substantially affect the difficulty of the problem? How do these characteristics affect different state-of-the-art algorithms? With this paper, we present the first investigation aiming to answer these questions. We identify two key factors affecting unlearning difficulty and the performance of unlearning algorithms. Evaluation on forget sets that isolate these identified factors reveals previously-unknown behaviours of state-of-the-art algorithms that don't materialize on random forget sets. Based on our insights, we develop a framework coined Refined-Unlearning Meta-algorithm (RUM) that encompasses: (i) refining the forget set into homogenized subsets, according to different characteristics; and (ii) a meta-algorithm that employs existing algorithms to unlearn each subset and finally delivers a model that has unlearned the overall forget set. We find that RUM substantially improves top-performing unlearning algorithms. Overall, we view our work as an important step in (i) deepening our scientific understanding of unlearning and (ii) revealing new pathways to improving the state-of-the-art.
Abstract:LLMs have been found to memorize training textual sequences and regurgitate verbatim said sequences during text generation time. This fact is known to be the cause of privacy and related (e.g., copyright) problems. Unlearning in LLMs then takes the form of devising new algorithms that will properly deal with these side-effects of memorized data, while not hurting the model's utility. We offer a fresh perspective towards this goal, namely, that each textual sequence to be forgotten should be treated differently when being unlearned based on its degree of memorization within the LLM. We contribute a new metric for measuring unlearning quality, an adversarial attack showing that SOTA algorithms lacking this perspective fail for privacy, and two new unlearning methods based on Gradient Ascent and Task Arithmetic, respectively. A comprehensive performance evaluation across an extensive suite of NLP tasks then mapped the solution space, identifying the best solutions under different scales in model capacities and forget set sizes and quantified the gains of the new approaches.
Abstract:Deep machine unlearning is the problem of removing the influence of a cohort of data from the weights of a trained deep model. This challenge is enjoying increasing attention due to the widespread use of neural networks in applications involving user data: allowing users to exercise their `right to be forgotten' necessitates an effective unlearning algorithm. However, deleting data from models is also of interest in practice for other applications where individual user privacy is not necessarily a consideration: removing biases, out-of-date examples, outliers, or noisy labels, and different such applications come with different desiderata. We propose a new unlearning algorithm (coined SCRUB) and conduct a comprehensive experimental evaluation against several previous state-of-the-art models. The results reveal that SCRUB is consistently a top performer across three different metrics for measuring unlearning quality, reflecting different application scenarios, while not degrading the model's performance.
Abstract:Machine Learning (ML) is changing DBs as many DB components are being replaced by ML models. One open problem in this setting is how to update such ML models in the presence of data updates. We start this investigation focusing on data insertions (dominating updates in analytical DBs). We study how to update neural network (NN) models when new data follows a different distribution (a.k.a. it is "out-of-distribution" -- OOD), rendering previously-trained NNs inaccurate. A requirement in our problem setting is that learned DB components should ensure high accuracy for tasks on old and new data (e.g., for approximate query processing (AQP), cardinality estimation (CE), synthetic data generation (DG), etc.). This paper proposes a novel updatability framework (DDUp). DDUp can provide updatability for different learned DB system components, even based on different NNs, without the high costs to retrain the NNs from scratch. DDUp entails two components: First, a novel, efficient, and principled statistical-testing approach to detect OOD data. Second, a novel model updating approach, grounded on the principles of transfer learning with knowledge distillation, to update learned models efficiently, while still ensuring high accuracy. We develop and showcase DDUp's applicability for three different learned DB components, AQP, CE, and DG, each employing a different type of NN. Detailed experimental evaluation using real and benchmark datasets for AQP, CE, and DG detail DDUp's performance advantages.
Abstract:Join operations (especially n-way, many-to-many joins) are known to be time- and resource-consuming. At large scales, with respect to table and join-result sizes, current state of the art approaches (including both binary-join plans which use Nested-loop/Hash/Sort-merge Join algorithms or, alternatively, worst-case optimal join algorithms (WOJAs)), may even fail to produce any answer given reasonable resource and time constraints. In this work, we introduce a new approach for n-way equi-join processing, the Graphical Join (GJ). The key idea is two-fold: First, to map the physical join computation problem to PGMs and introduce tweaked inference algorithms which can compute a Run-Length Encoding (RLE) based join-result summary, entailing all statistics necessary to materialize the join result. Second, and most importantly, to show that a join algorithm, like GJ, which produces the above join-result summary and then desummarizes it, can introduce large performance benefits in time and space. Comprehensive experimentation is undertaken with join queries from the JOB, TPCDS, and lastFM datasets, comparing GJ against PostgresQL and MonetDB and a state of the art WOJA implemented within the Umbra system. The results for in-memory join computation show performance improvements up to 64X, 388X, and 6X faster than PostgreSQL, MonetDB and Umbra, respectively. For on-disk join computation, GJ is faster than PostgreSQL, MonetDB and Umbra by up to 820X, 717X and 165X, respectively. Furthermore, GJ space needs are up to 21,488X, 38,333X, and 78,750X smaller than PostgresQL, MonetDB, and Umbra, respectively.
Abstract:This work is motivated by two key facts. First, it is highly desirable to be able to learn and perform knowledge discovery and analytics (LKD) tasks without the need to access raw-data tables. This may be due to organizations finding it increasingly frustrating and costly to manage and maintain ever-growing tables, or for privacy reasons. Hence, compact models can be developed from the raw data and used instead of the tables. Second, oftentimes, LKD tasks are to be performed on a (potentially very large) table which is itself the result of joining separate (potentially very large) relational tables. But how can one do this, when the individual to-be-joined tables are absent? Here, we pose the following fundamental questions: Q1: How can one "join models" of (absent/deleted) tables or "join models with other tables" in a way that enables LKD as if it were performed on the join of the actual raw tables? Q2: What are appropriate models to use per table? Q3: As the model join would be an approximation of the actual data join, how can one evaluate the quality of the model join result? This work puts forth a framework, Model Join, addressing these challenges. The framework integrates and joins the per-table models of the absent tables and generates a uniform and independent sample that is a high-quality approximation of a uniform and independent sample of the actual raw-data join. The approximation stems from the models, but not from the Model Join framework. The sample obtained by the Model Join can be used to perform LKD downstream tasks, such as approximate query processing, classification, clustering, regression, association rule mining, visualization, and so on. To our knowledge, this is the first work with this agenda and solutions. Detailed experiments with TPC-DS data and synthetic data showcase Model Join's usefulness.
Abstract:Large organizations have seamlessly incorporated data-driven decision making in their operations. However, as data volumes increase, expensive big data infrastructures are called to rescue. In this setting, analytics tasks become very costly in terms of query response time, resource consumption, and money in cloud deployments, especially when base data are stored across geographically distributed data centers. Therefore, we introduce an adaptive Machine Learning mechanism which is light-weight, stored client-side, can estimate the answers of a variety of aggregate queries and can avoid the big data backend. The estimations are performed in milliseconds are inexpensive and accurate as the mechanism learns from past analytical-query patterns. However, as analytic queries are ad-hoc and analysts' interests change over time we develop solutions that can swiftly and accurately detect such changes and adapt to new query patterns. The capabilities of our approach are demonstrated using extensive evaluation with real and synthetic datasets.
Abstract:Analysts wishing to explore multivariate data spaces, typically pose queries involving selection operators, i.e., range or radius queries, which define data subspaces of possible interest and then use aggregation functions, the results of which determine their exploratory analytics interests. However, such aggregate query (AQ) results are simple scalars and as such, convey limited information about the queried subspaces for exploratory analysis. We address this shortcoming aiding analysts to explore and understand data subspaces by contributing a novel explanation mechanism coined XAXA: eXplaining Aggregates for eXploratory Analytics. XAXA's novel AQ explanations are represented using functions obtained by a three-fold joint optimization problem. Explanations assume the form of a set of parametric piecewise-linear functions acquired through a statistical learning model. A key feature of the proposed solution is that model training is performed by only monitoring AQs and their answers on-line. In XAXA, explanations for future AQs can be computed without any database (DB) access and can be used to further explore the queried data subspaces, without issuing any more queries to the DB. We evaluate the explanation accuracy and efficiency of XAXA through theoretically grounded metrics over real-world and synthetic datasets and query workloads.