Abstract:Statistics suffers from a fundamental problem, "the curse of endogeneity" -- the regression function, or more broadly the prediction risk minimizer with infinite data, may not be the target we wish to pursue. This is because when complex data are collected from multiple sources, the biases deviated from the interested (causal) association inherited in individuals or sub-populations are not expected to be canceled. Traditional remedies are of hindsight and restrictive in being tailored to prior knowledge like untestable cause-effect structures, resulting in methods that risk model misspecification and lack scalable applicability. This paper seeks to offer a purely data-driven and universally applicable method that only uses the heterogeneity of the biases in the data rather than following pre-offered commandments. Such an idea is formulated as a nonparametric invariance pursuit problem, whose goal is to unveil the invariant conditional expectation $m^\star(x)\equiv \mathbb{E}[Y^{(e)}|X_{S^\star}^{(e)}=x_{S^\star}]$ with unknown important variable set $S^\star$ across heterogeneous environments $e\in \mathcal{E}$. Under the structural causal model framework, $m^\star$ can be interpreted as certain data-driven causality in general. The paper contributes to proposing a novel framework, called Focused Adversarial Invariance Regularization (FAIR), formulated as a single minimax optimization program that can solve the general invariance pursuit problem. As illustrated by the unified non-asymptotic analysis, our adversarial estimation framework can attain provable sample-efficient estimation akin to standard regression under a minimal identification condition for various tasks and models. As an application, the FAIR-NN estimator realized by two Neural Network classes is highlighted as the first approach to attain statistically efficient estimation in general nonparametric invariance learning.
Abstract:In some fields of AI, machine learning and statistics, the validation of new methods and algorithms is often hindered by the scarcity of suitable real-world datasets. Researchers must often turn to simulated data, which yields limited information about the applicability of the proposed methods to real problems. As a step forward, we have constructed two devices that allow us to quickly and inexpensively produce large datasets from non-trivial but well-understood physical systems. The devices, which we call causal chambers, are computer-controlled laboratories that allow us to manipulate and measure an array of variables from these physical systems, providing a rich testbed for algorithms from a variety of fields. We illustrate potential applications through a series of case studies in fields such as causal discovery, out-of-distribution generalization, change point detection, independent component analysis, and symbolic regression. For applications to causal inference, the chambers allow us to carefully perform interventions. We also provide and empirically validate a causal model of each chamber, which can be used as ground truth for different tasks. All hardware and software is made open source, and the datasets are publicly available at causalchamber.org or through the Python package causalchamber.
Abstract:We define extrapolation as any type of statistical inference on a conditional function (e.g., a conditional expectation or conditional quantile) evaluated outside of the support of the conditioning variable. This type of extrapolation occurs in many data analysis applications and can invalidate the resulting conclusions if not taken into account. While extrapolating is straightforward in parametric models, it becomes challenging in nonparametric models. In this work, we extend the nonparametric statistical model to explicitly allow for extrapolation and introduce a class of extrapolation assumptions that can be combined with existing inference techniques to draw extrapolation-aware conclusions. The proposed class of extrapolation assumptions stipulate that the conditional function attains its minimal and maximal directional derivative, in each direction, within the observed support. We illustrate how the framework applies to several statistical applications including prediction and uncertainty quantification. We furthermore propose a consistent estimation procedure that can be used to adjust existing nonparametric estimates to account for extrapolation by providing lower and upper extrapolation bounds. The procedure is empirically evaluated on both simulated and real-world data.
Abstract:We propose a method to detect model misspecifications in nonlinear causal additive and potentially heteroscedastic noise models. We aim to identify predictor variables for which we can infer the causal effect even in cases of such misspecification. We develop a general framework based on knowledge of the multivariate observational data distribution and we then propose an algorithm for finite sample data, discuss its asymptotic properties, and illustrate its performance on simulated and real data.
Abstract:In recent years, there has been a growing interest in statistical methods that exhibit robust performance under distribution changes between training and test data. While most of the related research focuses on point predictions with the squared error loss, this article turns the focus towards probabilistic predictions, which aim to comprehensively quantify the uncertainty of an outcome variable given covariates. Within a causality-inspired framework, we investigate the invariance and robustness of probabilistic predictions with respect to proper scoring rules. We show that arbitrary distribution shifts do not, in general, admit invariant and robust probabilistic predictions, in contrast to the setting of point prediction. We illustrate how to choose evaluation metrics and restrict the class of distribution shifts to allow for identifiability and invariance in the prototypical Gaussian heteroscedastic linear model. Motivated by these findings, we propose a method to yield invariant probabilistic predictions, called IPP, and study the consistency of the underlying parameters. Finally, we demonstrate the empirical performance of our proposed procedure on simulated as well as on single-cell data.
Abstract:Classical machine learning methods may lead to poor prediction performance when the target distribution differs from the source populations. This paper utilizes data from multiple sources and introduces a group distributionally robust prediction model defined to optimize an adversarial reward about explained variance with respect to a class of target distributions. Compared to classical empirical risk minimization, the proposed robust prediction model improves the prediction accuracy for target populations with distribution shifts. We show that our group distributionally robust prediction model is a weighted average of the source populations' conditional outcome models. We leverage this key identification result to robustify arbitrary machine learning algorithms, including, for example, random forests and neural networks. We devise a novel bias-corrected estimator to estimate the optimal aggregation weight for general machine-learning algorithms and demonstrate its improvement in the convergence rate. Our proposal can be seen as a distributionally robust federated learning approach that is computationally efficient and easy to implement using arbitrary machine learning base algorithms, satisfies some privacy constraints, and has a nice interpretation of different sources' importance for predicting a given target covariate distribution. We demonstrate the performance of our proposed group distributionally robust method on simulated and real data with random forests and neural networks as base-learning algorithms.
Abstract:Since distribution shifts are common in real-world applications, there is a pressing need for developing prediction models that are robust against such shifts. Existing frameworks, such as empirical risk minimization or distributionally robust optimization, either lack generalizability for unseen distributions or rely on postulated distance measures. Alternatively, causality offers a data-driven and structural perspective to robust predictions. However, the assumptions necessary for causal inference can be overly stringent, and the robustness offered by such causal models often lacks flexibility. In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG), a method that exploits general additive interventions in training data for robust predictions against unseen interventions, and naturally interpolates between in-distribution prediction and causality. In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts. Furthermore, we show that our framework includes anchor regression (Rothenh\"ausler et al.\ 2021) as a special case, and that it yields prediction models that protect against more diverse perturbations. We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance. Finally, we empirically validate our methods on synthetic simulations and on single-cell data.
Abstract:TSCI implements treatment effect estimation from observational data under invalid instruments in the R statistical computing environment. Existing instrumental variable approaches rely on arguably strong and untestable identification assumptions, which limits their practical application. TSCI does not require the classical instrumental variable identification conditions and is effective even if all instruments are invalid. TSCI implements a two-stage algorithm. In the first stage, machine learning is used to cope with nonlinearities and interactions in the treatment model. In the second stage, a space to capture the instrument violations is selected in a data-adaptive way. These violations are then projected out to estimate the treatment effect.
Abstract:We present repliclust (from repli-cate and clust-er), a Python package for generating synthetic data sets with clusters. Our approach is based on data set archetypes, high-level geometric descriptions from which the user can create many different data sets, each possessing the desired geometric characteristics. The architecture of our software is modular and object-oriented, decomposing data generation into algorithms for placing cluster centers, sampling cluster shapes, selecting the number of data points for each cluster, and assigning probability distributions to clusters. The project webpage, repliclust.org, provides a concise user guide and thorough documentation.
Abstract:The Distributional Random Forest (DRF) is a recently introduced Random Forest algorithm to estimate multivariate conditional distributions. Due to its general estimation procedure, it can be employed to estimate a wide range of targets such as conditional average treatment effects, conditional quantiles, and conditional correlations. However, only results about the consistency and convergence rate of the DRF prediction are available so far. We characterize the asymptotic distribution of DRF and develop a bootstrap approximation of it. This allows us to derive inferential tools for quantifying standard errors and the construction of confidence regions that have asymptotic coverage guarantees. In simulation studies, we empirically validate the developed theory for inference of low-dimensional targets and for testing distributional differences between two populations.