Abstract:Existing defence mechanisms have demonstrated significant effectiveness in mitigating rule-based Denial-of-Service (DoS) attacks, leveraging predefined signatures and static heuristics to identify and block malicious traffic. However, the emergence of AI-driven techniques presents new challenges to SDN security, potentially compromising the efficacy of existing defence mechanisms. In this paper, we introduce~AdaDoS, an adaptive attack model that disrupt network operations while evading detection by existing DoS-based detectors through adversarial reinforcement learning (RL). Specifically, AdaDoS models the problem as a competitive game between an attacker, whose goal is to obstruct network traffic without being detected, and a detector, which aims to identify malicious traffic. AdaDoS can solve this game by dynamically adjusting its attack strategy based on feedback from the SDN and the detector. Additionally, recognising that attackers typically have less information than defenders, AdaDoS formulates the DoS-like attack as a partially observed Markov decision process (POMDP), with the attacker having access only to delay information between attacker and victim nodes. We address this challenge with a novel reciprocal learning module, where the student agent, with limited observations, enhances its performance by learning from the teacher agent, who has full observational capabilities in the SDN environment. AdaDoS represents the first application of RL to develop DoS-like attack sequences, capable of adaptively evading both machine learning-based and rule-based DoS-like attack detectors.




Abstract:Spatiotemporal data is prevalent in a wide range of edge devices, such as those used in personal communication and financial transactions. Recent advancements have sparked a growing interest in integrating spatiotemporal analysis with large-scale language models. However, spatiotemporal data often contains sensitive information, making it unsuitable for open third-party access. To address this challenge, we propose a Graph-GAN-based model for generating privacy-protected spatiotemporal data. Our approach incorporates spatial and temporal attention blocks in the discriminator and a spatiotemporal deconvolution structure in the generator. These enhancements enable efficient training under Gaussian noise to achieve differential privacy. Extensive experiments conducted on three real-world spatiotemporal datasets validate the efficacy of our model. Our method provides a privacy guarantee while maintaining the data utility. The prediction model trained on our generated data maintains a competitive performance compared to the model trained on the original data.




Abstract:The large transformer-based language models demonstrate excellent performance in natural language processing. By considering the closeness of natural languages to the high-level programming language such as C/C++, this work studies how good are the large transformer-based language models detecting software vulnerabilities. Our results demonstrate the well performance of these models on software vulnerability detection. The answer enables extending transformer-based language models to vulnerability detection and leveraging superior performance beyond the natural language processing domain. Besides, we perform the model's security check using Microsoft's Counterfit, a command-line tool to assess the model's security. Our results find that these models are vulnerable to adversarial examples. In this regard, we present a simple countermeasure and its result. Experimenting with large models is always a challenge due to the requirement of computing resources and platforms/libraries & dependencies. Based on the experiences and difficulties we faced during this work, we present our recommendation while choosing the platforms to run these large models. Moreover, the popular platforms are surveyed thoroughly in this paper.




Abstract:As an essential processing step in computer vision applications, image resizing or scaling, more specifically downsampling, has to be applied before feeding a normally large image into a convolutional neural network (CNN) model because CNN models typically take small fixed-size images as inputs. However, image scaling functions could be adversarially abused to perform a newly revealed attack called image-scaling attack, which can affect a wide range of computer vision applications building upon image-scaling functions. This work presents an image-scaling attack detection framework, termed as Decamouflage. Decamouflage consists of three independent detection methods: (1) rescaling, (2) filtering/pooling, and (3) steganalysis. While each of these three methods is efficient standalone, they can work in an ensemble manner not only to improve the detection accuracy but also to harden potential adaptive attacks. Decamouflage has a pre-determined detection threshold that is generic. More precisely, as we have validated, the threshold determined from one dataset is also applicable to other different datasets. Extensive experiments show that Decamouflage achieves detection accuracy of 99.9\% and 99.8\% in the white-box (with the knowledge of attack algorithms) and the black-box (without the knowledge of attack algorithms) settings, respectively. To corroborate the efficiency of Decamouflage, we have also measured its run-time overhead on a personal PC with an i5 CPU and found that Decamouflage can detect image-scaling attacks in milliseconds. Overall, Decamouflage can accurately detect image scaling attacks in both white-box and black-box settings with acceptable run-time overhead.