Abstract:A Standard Operating Procedure (SOP) defines a low-level, step-by-step written guide for a business software workflow based on a video demonstration. SOPs are a crucial step toward automating end-to-end software workflows. Manually creating SOPs can be time-consuming. Recent advancements in large video-language models offer the potential for automating SOP generation by analyzing recordings of human demonstrations. However, current large video-language models face challenges with zero-shot SOP generation. We explore in-context learning with video-language models for SOP generation. We report that in-context learning sometimes helps video-language models at SOP generation. We then propose an in-context ensemble learning to further enhance the capabilities of the models in SOP generation.
Abstract:Estimating clinically-relevant vascular features following vessel segmentation is a standard pipeline for retinal vessel analysis, which provides potential ocular biomarkers for both ophthalmic disease and systemic disease. In this work, we integrate these clinical features into a novel vascular feature optimised loss function (VAFO-Loss), in order to regularise networks to produce segmentation maps, with which more accurate vascular features can be derived. Two common vascular features, vessel density and fractal dimension, are identified to be sensitive to intra-segment misclassification, which is a well-recognised problem in multi-class artery/vein segmentation particularly hindering the estimation of these vascular features. Thus we encode these two features into VAFO-Loss. We first show that incorporating our end-to-end VAFO-Loss in standard segmentation networks indeed improves vascular feature estimation, yielding quantitative improvement in stroke incidence prediction, a clinical downstream task. We also report a technically interesting finding that the trained segmentation network, albeit biased by the feature optimised loss VAFO-Loss, shows statistically significant improvement in segmentation metrics, compared to those trained with other state-of-the-art segmentation losses.
Abstract:Accurate multi-class segmentation is a long-standing challenge in medical imaging, especially in scenarios where classes share strong similarity. Segmenting retinal blood vessels in retinal photographs is one such scenario, in which arteries and veins need to be identified and differentiated from each other and from the background. Intra-segment misclassification, i.e. veins classified as arteries or vice versa, frequently occurs when arteries and veins intersect, whereas in binary retinal vessel segmentation, error rates are much lower. We thus propose a new approach that decomposes multi-class segmentation into multiple binary, followed by a binary-to-multi-class fusion network. The network merges representations of artery, vein, and multi-class feature maps, each of which are supervised by expert vessel annotation in adversarial training. A skip-connection based merging process explicitly maintains class-specific gradients to avoid gradient vanishing in deep layers, to favor the discriminative features. The results show that, our model respectively improves F1-score by 4.4\%, 5.1\%, and 4.2\% compared with three state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV data sets.
Abstract:Segmentation of ultra-high resolution images is challenging because of their enormous size, consisting of millions or even billions of pixels. Typical solutions include dividing input images into patches of fixed size and/or down-sampling to meet memory constraints. Such operations incur information loss in the field-of-view (FoV) i.e., spatial coverage and the image resolution. The impact on segmentation performance is, however, as yet understudied. In this work, we start with a motivational experiment which demonstrates that the trade-off between FoV and resolution affects the segmentation performance on ultra-high resolution images---and furthermore, its influence also varies spatially according to the local patterns in different areas. We then introduce foveation module, a learnable "dataloader" which, for a given ultra-high resolution image, adaptively chooses the appropriate configuration (FoV/resolution trade-off) of the input patch to feed to the downstream segmentation model at each spatial location of the image. The foveation module is jointly trained with the segmentation network to maximise the task performance. We demonstrate on three publicly available high-resolution image datasets that the foveation module consistently improves segmentation performance over the cases trained with patches of fixed FoV/resolution trade-off. Our approach achieves the SoTA performance on the DeepGlobe aerial image dataset. On the Gleason2019 histopathology dataset, our model achieves better segmentation accuracy for the two most clinically important and ambiguous classes (Gleason Grade 3 and 4) than the top performers in the challenge by 13.1% and 7.5%, and improves on the average performance of 6 human experts by 6.5% and 7.5%. Our code and trained models are available at $\text{https://github.com/lxasqjc/Foveation-Segmentation}$.