Abstract:DNNs trained on natural clean samples have been shown to perform poorly on corrupted samples, such as noisy or blurry images. Various data augmentation methods have been recently proposed to improve DNN's robustness against common corruptions. Despite their success, they require computationally expensive training and cannot be applied to off-the-shelf trained models. Recently, it has been shown that updating BatchNorm (BN) statistics of an off-the-shelf model on a single corruption improves its accuracy on that corruption significantly. However, adopting the idea at inference time when the type of corruption is unknown and changing decreases the effectiveness of this method. In this paper, we harness the Fourier domain to detect the corruption type, a challenging task in the image domain. We propose a unified framework consisting of a corruption-detection model and BN statistics update that improves the corruption accuracy of any off-the-shelf trained model. We benchmark our framework on different models and datasets. Our results demonstrate about 8% and 4% accuracy improvement on CIFAR10-C and ImageNet-C, respectively. Furthermore, our framework can further improve the accuracy of state-of-the-art robust models, such as AugMix and DeepAug.
Abstract:Biodiversity conservation depends on accurate, up-to-date information about wildlife population distributions. Motion-activated cameras, also known as camera traps, are a critical tool for population surveys, as they are cheap and non-intrusive. However, extracting useful information from camera trap images is a cumbersome process: a typical camera trap survey may produce millions of images that require slow, expensive manual review. Consequently, critical information is often lost due to resource limitations, and critical conservation questions may be answered too slowly to support decision-making. Computer vision is poised to dramatically increase efficiency in image-based biodiversity surveys, and recent studies have harnessed deep learning techniques for automatic information extraction from camera trap images. However, the accuracy of results depends on the amount, quality, and diversity of the data available to train models, and the literature has focused on projects with millions of relevant, labeled training images. Many camera trap projects do not have a large set of labeled images and hence cannot benefit from existing machine learning techniques. Furthermore, even projects that do have labeled data from similar ecosystems have struggled to adopt deep learning methods because image classification models overfit to specific image backgrounds (i.e., camera locations). In this paper, we focus not on automating the labeling of camera trap images, but on accelerating this process. We combine the power of machine intelligence and human intelligence to build a scalable, fast, and accurate active learning system to minimize the manual work required to identify and count animals in camera trap images. Our proposed scheme can match the state of the art accuracy on a 3.2 million image dataset with as few as 14,100 manual labels, which means decreasing manual labeling effort by over 99.5%.