Abstract:Vision-Language Models (VLMs) achieved strong performance on a variety of tasks (e.g., image-text retrieval, visual question answering). However, most VLMs rely on coarse-grained image-caption pairs for alignment, relying on data volume to resolve ambiguities and ground linguistic concepts in images. The richer semantic and syntactic structure within text is largely overlooked. To address this, we propose HIerarchically STructured Learning (HIST) that enhances VLM training without any additional supervision, by hierarchically decomposing captions into the constituent Subject, Noun Phrases, and Composite Phrases. Entailment between these constituent components allows us to formulate additional regularization constraints on the VLM attention maps. Specifically, we introduce two novel loss functions: (1) Subject Loss, which aligns image content with the subject of corresponding phrase, acting as an entailment of standard contrastive/matching losses at the Phrase level; (2) Addition Loss, to balance attention across multiple objects. HIST is general, and can be applied to any VLM for which attention between vision and language can be computed; we illustrate its efficacy on BLIP and ALBEF. HIST outperforms baseline VLMs, achieving up to +9.8% improvement in visual grounding, +6.3% in multi-object referring segmentation, +1.1% in image-text retrieval, and +0.2% in visual question answering, underscoring the value of structuring learning in VLMs.
Abstract:The emergence of attention-based transformer models has led to their extensive use in various tasks, due to their superior generalization and transfer properties. Recent research has demonstrated that such models, when prompted appropriately, are excellent for few-shot inference. However, such techniques are under-explored for dense prediction tasks like semantic segmentation. In this work, we examine the effectiveness of prompting a transformer-decoder with learned visual prompts for the generalized few-shot segmentation (GFSS) task. Our goal is to achieve strong performance not only on novel categories with limited examples, but also to retain performance on base categories. We propose an approach to learn visual prompts with limited examples. These learned visual prompts are used to prompt a multiscale transformer decoder to facilitate accurate dense predictions. Additionally, we introduce a unidirectional causal attention mechanism between the novel prompts, learned with limited examples, and the base prompts, learned with abundant data. This mechanism enriches the novel prompts without deteriorating the base class performance. Overall, this form of prompting helps us achieve state-of-the-art performance for GFSS on two different benchmark datasets: COCO-$20^i$ and Pascal-$5^i$, without the need for test-time optimization (or transduction). Furthermore, test-time optimization leveraging unlabelled test data can be used to improve the prompts, which we refer to as transductive prompt tuning.
Abstract:Recent advances in pixel-level tasks (e.g., segmentation) illustrate the benefit of long-range interactions between aggregated region-based representations that can enhance local features. However, such pixel-to-region associations and the resulting representation, which often take the form of attention, cannot model the underlying semantic structure of the scene (e.g., individual objects and, by extension, their interactions). In this work, we take a step toward addressing this limitation. Specifically, we propose an architecture where we learn to project image features into latent region representations and perform global reasoning across them, using a transformer, to produce contextualized and scene-consistent representations that are then fused with original pixel-level features. Our design enables the latent regions to represent semantically meaningful concepts, by ensuring that activated regions are spatially disjoint and unions of such regions correspond to connected object segments. The resulting semantic global reasoning (SGR) is end-to-end trainable and can be combined with any semantic segmentation framework and backbone. Combining SGR with DeepLabV3 results in a semantic segmentation performance that is competitive to the state-of-the-art, while resulting in more semantically interpretable and diverse region representations, which we show can effectively transfer to detection and instance segmentation. Further, we propose a new metric that allows us to measure the semantics of representations at both the object class and instance level.
Abstract:In this work, we address the problem of 3D human pose estimation from a sequence of 2D human poses. Although the recent success of deep networks has led many state-of-the-art methods for 3D pose estimation to train deep networks end-to-end to predict from images directly, the top-performing approaches have shown the effectiveness of dividing the task of 3D pose estimation into two steps: using a state-of-the-art 2D pose estimator to estimate the 2D pose from images and then mapping them into 3D space. They also showed that a low-dimensional representation like 2D locations of a set of joints can be discriminative enough to estimate 3D pose with high accuracy. However, estimation of 3D pose for individual frames leads to temporally incoherent estimates due to independent error in each frame causing jitter. Therefore, in this work we utilize the temporal information across a sequence of 2D joint locations to estimate a sequence of 3D poses. We designed a sequence-to-sequence network composed of layer-normalized LSTM units with shortcut connections connecting the input to the output on the decoder side and imposed temporal smoothness constraint during training. We found that the knowledge of temporal consistency improves the best reported result on Human3.6M dataset by approximately $12.2\%$ and helps our network to recover temporally consistent 3D poses over a sequence of images even when the 2D pose detector fails.