Abstract:The generation of stylistic 3D facial animations driven by speech poses a significant challenge as it requires learning a many-to-many mapping between speech, style, and the corresponding natural facial motion. However, existing methods either employ a deterministic model for speech-to-motion mapping or encode the style using a one-hot encoding scheme. Notably, the one-hot encoding approach fails to capture the complexity of the style and thus limits generalization ability. In this paper, we propose DiffPoseTalk, a generative framework based on the diffusion model combined with a style encoder that extracts style embeddings from short reference videos. During inference, we employ classifier-free guidance to guide the generation process based on the speech and style. We extend this to include the generation of head poses, thereby enhancing user perception. Additionally, we address the shortage of scanned 3D talking face data by training our model on reconstructed 3DMM parameters from a high-quality, in-the-wild audio-visual dataset. Our extensive experiments and user study demonstrate that our approach outperforms state-of-the-art methods. The code and dataset will be made publicly available.
Abstract:Caricature is a kind of artistic style of human faces that attracts considerable research in computer vision. So far all existing 3D caricature generation methods require some information related to caricature as input, e.g., a caricature sketch or 2D caricature. However, this kind of input is difficult to provide by non-professional users. In this paper, we propose an end-to-end deep neural network model to generate high-quality 3D caricature with a simple face photo as input. The most challenging issue in our system is that the source domain of face photos (characterized by 2D normal faces) is significantly different from the target domain of 3D caricatures (characterized by 3D exaggerated face shapes and texture). To address this challenge, we (1) build a large dataset of 6,100 3D caricature meshes and use it to establish a PCA model in the 3D caricature shape space and (2) detect landmarks in the input face photo and use them to set up correspondence between 2D caricature and 3D caricature shape. Our system can automatically generate high-quality 3D caricatures. In many situations, users want to control the output by a simple and intuitive way, so we further introduce a simple-to-use interactive control with three horizontal and one vertical lines. Experiments and user studies show that our system is easy to use and can generate high-quality 3D caricatures.