Abstract:Active learning (AL) has achieved great success by selecting the most valuable examples from unlabeled data. However, they usually deteriorate in real scenarios where open-set noise gets involved, which is studied as open-set annotation (OSA). In this paper, we owe the deterioration to the unreliable predictions arising from softmax-based translation invariance and propose a Dirichlet-based Coarse-to-Fine Example Selection (DCFS) strategy accordingly. Our method introduces simplex-based evidential deep learning (EDL) to break translation invariance and distinguish known and unknown classes by considering evidence-based data and distribution uncertainty simultaneously. Furthermore, hard known-class examples are identified by model discrepancy generated from two classifier heads, where we amplify and alleviate the model discrepancy respectively for unknown and known classes. Finally, we combine the discrepancy with uncertainties to form a two-stage strategy, selecting the most informative examples from known classes. Extensive experiments on various openness ratio datasets demonstrate that DCFS achieves state-of-art performance.
Abstract:Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations. Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance. To solve this problem, the mainstream method developed an effective thresholding strategy to generate accurate pseudo-labels. Unfortunately, the method neglected the quality of model predictions and its potential impact on pseudo-labeling performance. In this paper, we propose a dual-perspective method to generate high-quality pseudo-labels. To improve the quality of model predictions, we perform dual-decoupling to boost the learning of correlative and discriminative features, while refining the generation and utilization of pseudo-labels. To obtain proper class-wise thresholds, we propose the metric-adaptive thresholding strategy to estimate the thresholds, which maximize the pseudo-label performance for a given metric on labeled data. Experiments on multiple benchmark datasets show the proposed method can achieve the state-of-the-art performance and outperform the comparative methods with a significant margin.
Abstract:The key to multi-label image classification (MLC) is to improve model performance by leveraging label correlations. Unfortunately, it has been shown that overemphasizing co-occurrence relationships can cause the overfitting issue of the model, ultimately leading to performance degradation. In this paper, we provide a causal inference framework to show that the correlative features caused by the target object and its co-occurring objects can be regarded as a mediator, which has both positive and negative impacts on model predictions. On the positive side, the mediator enhances the recognition performance of the model by capturing co-occurrence relationships; on the negative side, it has the harmful causal effect that causes the model to make an incorrect prediction for the target object, even when only co-occurring objects are present in an image. To address this problem, we propose a counterfactual reasoning method to measure the total direct effect, achieved by enhancing the direct effect caused only by the target object. Due to the unknown location of the target object, we propose patching-based training and inference to accomplish this goal, which divides an image into multiple patches and identifies the pivot patch that contains the target object. Experimental results on multiple benchmark datasets with diverse configurations validate that the proposed method can achieve state-of-the-art performance.
Abstract:Learning with noisy labels can significantly hinder the generalization performance of deep neural networks (DNNs). Existing approaches address this issue through loss correction or example selection methods. However, these methods often rely on the model's predictions obtained from the softmax function, which can be over-confident and unreliable. In this study, we identify the translation invariance of the softmax function as the underlying cause of this problem and propose the \textit{Dirichlet-based Prediction Calibration} (DPC) method as a solution. Our method introduces a calibrated softmax function that breaks the translation invariance by incorporating a suitable constant in the exponent term, enabling more reliable model predictions. To ensure stable model training, we leverage a Dirichlet distribution to assign probabilities to predicted labels and introduce a novel evidence deep learning (EDL) loss. The proposed loss function encourages positive and sufficiently large logits for the given label, while penalizing negative and small logits for other labels, leading to more distinct logits and facilitating better example selection based on a large-margin criterion. Through extensive experiments on diverse benchmark datasets, we demonstrate that DPC achieves state-of-the-art performance. The code is available at https://github.com/chenchenzong/DPC.
Abstract:Existing knowledge distillation methods typically work by imparting the knowledge of output logits or intermediate feature maps from the teacher network to the student network, which is very successful in multi-class single-label learning. However, these methods can hardly be extended to the multi-label learning scenario, where each instance is associated with multiple semantic labels, because the prediction probabilities do not sum to one and feature maps of the whole example may ignore minor classes in such a scenario. In this paper, we propose a novel multi-label knowledge distillation method. On one hand, it exploits the informative semantic knowledge from the logits by dividing the multi-label learning problem into a set of binary classification problems; on the other hand, it enhances the distinctiveness of the learned feature representations by leveraging the structural information of label-wise embeddings. Experimental results on multiple benchmark datasets validate that the proposed method can avoid knowledge counteraction among labels, thus achieving superior performance against diverse comparing methods. Our code is available at: https://github.com/penghui-yang/L2D
Abstract:Pseudo labeling is a popular and effective method to leverage the information of unlabeled data. Conventional instance-aware pseudo labeling methods often assign each unlabeled instance with a pseudo label based on its predicted probabilities. However, due to the unknown number of true labels, these methods cannot generalize well to semi-supervised multi-label learning (SSMLL) scenarios, since they would suffer from the risk of either introducing false positive labels or neglecting true positive ones. In this paper, we propose to solve the SSMLL problems by performing Class-distribution-Aware Pseudo labeling (CAP), which encourages the class distribution of pseudo labels to approximate the true one. Specifically, we design a regularized learning framework consisting of the class-aware thresholds to control the number of pseudo labels for each class. Given that the labeled and unlabeled examples are sampled according to the same distribution, we determine the thresholds by exploiting the empirical class distribution, which can be treated as a tight approximation to the true one. Theoretically, we show that the generalization performance of the proposed method is dependent on the pseudo labeling error, which can be significantly reduced by the CAP strategy. Extensive experimental results on multiple benchmark datasets validate that CAP can effectively solve the SSMLL problems.
Abstract:Deep neural networks trained with standard cross-entropy loss are more prone to memorize noisy labels, which degrades their performance. Negative learning using complementary labels is more robust when noisy labels intervene but with an extremely slow model convergence speed. In this paper, we first introduce a bidirectional learning scheme, where positive learning ensures convergence speed while negative learning robustly copes with label noise. Further, a dynamic sample reweighting strategy is proposed to globally weaken the effect of noise-labeled samples by exploiting the excellent discriminatory ability of negative learning on the sample probability distribution. In addition, we combine self-distillation to further improve the model performance. The code is available at \url{https://github.com/chenchenzong/BLDR}.
Abstract:Partial label learning (PLL) is a typical weakly supervised learning framework, where each training instance is associated with a candidate label set, among which only one label is valid. To solve PLL problems, typically methods try to perform disambiguation for candidate sets by either using prior knowledge, such as structure information of training data, or refining model outputs in a self-training manner. Unfortunately, these methods often fail to obtain a favorable performance due to the lack of prior information or unreliable predictions in the early stage of model training. In this paper, we propose a novel framework for partial label learning with meta objective guided disambiguation (MoGD), which aims to recover the ground-truth label from candidate labels set by solving a meta objective on a small validation set. Specifically, to alleviate the negative impact of false positive labels, we re-weight each candidate label based on the meta loss on the validation set. Then, the classifier is trained by minimizing the weighted cross entropy loss. The proposed method can be easily implemented by using various deep networks with the ordinary SGD optimizer. Theoretically, we prove the convergence property of meta objective and derive the estimation error bounds of the proposed method. Extensive experiments on various benchmark datasets and real-world PLL datasets demonstrate that the proposed method can achieve competent performance when compared with the state-of-the-art methods.
Abstract:In this paper, we study the partial multi-label (PML) image classification problem, where each image is annotated with a candidate label set consists of multiple relevant labels and other noisy labels. Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions, which unfortunately is unavailable in many real tasks. Furthermore, because the objective function for disambiguation is usually elaborately designed on the whole training set, it can be hardly optimized in a deep model with SGD on mini-batches. In this paper, for the first time we propose a deep model for PML to enhance the representation and discrimination ability. On one hand, we propose a novel curriculum based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes. On the other hand, a consistency regularization is introduced for model retraining to balance fitting identified easy labels and exploiting potential relevant labels. Extensive experimental results on the commonly used benchmark datasets show the proposed method significantly outperforms the SOTA methods.
Abstract:Class-conditional noise commonly exists in machine learning tasks, where the class label is corrupted with a probability depending on its ground-truth. Many research efforts have been made to improve the model robustness against the class-conditional noise. However, they typically focus on the single label case by assuming that only one label is corrupted. In real applications, an instance is usually associated with multiple labels, which could be corrupted simultaneously with their respective conditional probabilities. In this paper, we formalize this problem as a general framework of learning with Class-Conditional Multi-label Noise (CCMN for short). We establish two unbiased estimators with error bounds for solving the CCMN problems, and further prove that they are consistent with commonly used multi-label loss functions. Finally, a new method for partial multi-label learning is implemented with unbiased estimator under the CCMN framework. Empirical studies on multiple datasets and various evaluation metrics validate the effectiveness of the proposed method.