Abstract:Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations. Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance. To solve this problem, the mainstream method developed an effective thresholding strategy to generate accurate pseudo-labels. Unfortunately, the method neglected the quality of model predictions and its potential impact on pseudo-labeling performance. In this paper, we propose a dual-perspective method to generate high-quality pseudo-labels. To improve the quality of model predictions, we perform dual-decoupling to boost the learning of correlative and discriminative features, while refining the generation and utilization of pseudo-labels. To obtain proper class-wise thresholds, we propose the metric-adaptive thresholding strategy to estimate the thresholds, which maximize the pseudo-label performance for a given metric on labeled data. Experiments on multiple benchmark datasets show the proposed method can achieve the state-of-the-art performance and outperform the comparative methods with a significant margin.
Abstract:The key to multi-label image classification (MLC) is to improve model performance by leveraging label correlations. Unfortunately, it has been shown that overemphasizing co-occurrence relationships can cause the overfitting issue of the model, ultimately leading to performance degradation. In this paper, we provide a causal inference framework to show that the correlative features caused by the target object and its co-occurring objects can be regarded as a mediator, which has both positive and negative impacts on model predictions. On the positive side, the mediator enhances the recognition performance of the model by capturing co-occurrence relationships; on the negative side, it has the harmful causal effect that causes the model to make an incorrect prediction for the target object, even when only co-occurring objects are present in an image. To address this problem, we propose a counterfactual reasoning method to measure the total direct effect, achieved by enhancing the direct effect caused only by the target object. Due to the unknown location of the target object, we propose patching-based training and inference to accomplish this goal, which divides an image into multiple patches and identifies the pivot patch that contains the target object. Experimental results on multiple benchmark datasets with diverse configurations validate that the proposed method can achieve state-of-the-art performance.
Abstract:The rise of large language models (LLMs) has revolutionized the way that we interact with artificial intelligence systems through natural language. However, LLMs often misinterpret user queries because of their uncertain intention, leading to less helpful responses. In natural human interactions, clarification is sought through targeted questioning to uncover obscure information. Thus, in this paper, we introduce LaMAI (Language Model with Active Inquiry), designed to endow LLMs with this same level of interactive engagement. LaMAI leverages active learning techniques to raise the most informative questions, fostering a dynamic bidirectional dialogue. This approach not only narrows the contextual gap but also refines the output of the LLMs, aligning it more closely with user expectations. Our empirical studies, across a variety of complex datasets where LLMs have limited conversational context, demonstrate the effectiveness of LaMAI. The method improves answer accuracy from 31.9% to 50.9%, outperforming other leading question-answering frameworks. Moreover, in scenarios involving human participants, LaMAI consistently generates responses that are superior or comparable to baseline methods in more than 82% of the cases. The applicability of LaMAI is further evidenced by its successful integration with various LLMs, highlighting its potential for the future of interactive language models.
Abstract:Pseudo labeling is a popular and effective method to leverage the information of unlabeled data. Conventional instance-aware pseudo labeling methods often assign each unlabeled instance with a pseudo label based on its predicted probabilities. However, due to the unknown number of true labels, these methods cannot generalize well to semi-supervised multi-label learning (SSMLL) scenarios, since they would suffer from the risk of either introducing false positive labels or neglecting true positive ones. In this paper, we propose to solve the SSMLL problems by performing Class-distribution-Aware Pseudo labeling (CAP), which encourages the class distribution of pseudo labels to approximate the true one. Specifically, we design a regularized learning framework consisting of the class-aware thresholds to control the number of pseudo labels for each class. Given that the labeled and unlabeled examples are sampled according to the same distribution, we determine the thresholds by exploiting the empirical class distribution, which can be treated as a tight approximation to the true one. Theoretically, we show that the generalization performance of the proposed method is dependent on the pseudo labeling error, which can be significantly reduced by the CAP strategy. Extensive experimental results on multiple benchmark datasets validate that CAP can effectively solve the SSMLL problems.