Abstract:In cybersecurity, security analysts face the challenge of mitigating newly discovered vulnerabilities in real-time, with over 300,000 Common Vulnerabilities and Exposures (CVEs) identified since 1999. The sheer volume of known vulnerabilities complicates the detection of patterns for unknown threats. While LLMs can assist, they often hallucinate and lack alignment with recent threats. Over 25,000 vulnerabilities have been identified so far in 2024, which are introduced after popular LLMs' (e.g., GPT-4) training data cutoff. This raises a major challenge of leveraging LLMs in cybersecurity, where accuracy and up-to-date information are paramount. In this work, we aim to improve the adaptation of LLMs in vulnerability analysis by mimicking how analysts perform such tasks. We propose ProveRAG, an LLM-powered system designed to assist in rapidly analyzing CVEs with automated retrieval augmentation of web data while self-evaluating its responses with verifiable evidence. ProveRAG incorporates a self-critique mechanism to help alleviate omission and hallucination common in the output of LLMs applied in cybersecurity applications. The system cross-references data from verifiable sources (NVD and CWE), giving analysts confidence in the actionable insights provided. Our results indicate that ProveRAG excels in delivering verifiable evidence to the user with over 99% and 97% accuracy in exploitation and mitigation strategies, respectively. This system outperforms direct prompting and chunking retrieval in vulnerability analysis by overcoming temporal and context-window limitations. ProveRAG guides analysts to secure their systems more effectively while documenting the process for future audits.
Abstract:Multi-sensor fusion (MSF) is widely adopted for perception in autonomous vehicles (AVs), particularly for the task of 3D object detection with camera and LiDAR sensors. The rationale behind fusion is to capitalize on the strengths of each modality while mitigating their limitations. The exceptional and leading performance of fusion models has been demonstrated by advanced deep neural network (DNN)-based fusion techniques. Fusion models are also perceived as more robust to attacks compared to single-modal ones due to the redundant information in multiple modalities. In this work, we challenge this perspective with single-modal attacks that targets the camera modality, which is considered less significant in fusion but more affordable for attackers. We argue that the weakest link of fusion models depends on their most vulnerable modality, and propose an attack framework that targets advanced camera-LiDAR fusion models with adversarial patches. Our approach employs a two-stage optimization-based strategy that first comprehensively assesses vulnerable image areas under adversarial attacks, and then applies customized attack strategies to different fusion models, generating deployable patches. Evaluations with five state-of-the-art camera-LiDAR fusion models on a real-world dataset show that our attacks successfully compromise all models. Our approach can either reduce the mean average precision (mAP) of detection performance from 0.824 to 0.353 or degrade the detection score of the target object from 0.727 to 0.151 on average, demonstrating the effectiveness and practicality of our proposed attack framework.
Abstract:Logic locking has been proposed to safeguard intellectual property (IP) during chip fabrication. Logic locking techniques protect hardware IP by making a subset of combinational modules in a design dependent on a secret key that is withheld from untrusted parties. If an incorrect secret key is used, a set of deterministic errors is produced in locked modules, restricting unauthorized use. A common target for logic locking is neural accelerators, especially as machine-learning-as-a-service becomes more prevalent. In this work, we explore how logic locking can be used to compromise the security of a neural accelerator it protects. Specifically, we show how the deterministic errors caused by incorrect keys can be harnessed to produce neural-trojan-style backdoors. To do so, we first outline a motivational attack scenario where a carefully chosen incorrect key, which we call a trojan key, produces misclassifications for an attacker-specified input class in a locked accelerator. We then develop a theoretically-robust attack methodology to automatically identify trojan keys. To evaluate this attack, we launch it on several locked accelerators. In our largest benchmark accelerator, our attack identified a trojan key that caused a 74\% decrease in classification accuracy for attacker-specified trigger inputs, while degrading accuracy by only 1.7\% for other inputs on average.