Abstract:We study new types of dynamic allocation problems the {\sl Halting Bandit} models. As an application, we obtain new proofs for the classic Gittins index decomposition result and recent results of the authors in `Multi-armed bandits under general depreciation and commitment.'
Abstract:In this paper we derive an efficient method for computing the indices associated with an asymptotically optimal upper confidence bound algorithm (MDP-UCB) of Burnetas and Katehakis (1997) that only requires solving a system of two non-linear equations with two unknowns, irrespective of the cardinality of the state space of the Markovian decision process (MDP). In addition, we develop a similar acceleration for computing the indices for the MDP-Deterministic Minimum Empirical Divergence (MDP-DMED) algorithm developed in Cowan et al. (2019), based on ideas from Honda and Takemura (2011), that involves solving a single equation of one variable. We provide experimental results demonstrating the computational time savings and regret performance of these algorithms. In these comparison we also consider the Optimistic Linear Programming (OLP) algorithm (Tewari and Bartlett, 2008) and a method based on Posterior sampling (MDP-PS).
Abstract:In this paper we consider the basic version of Reinforcement Learning (RL) that involves computing optimal data driven (adaptive) policies for Markovian decision process with unknown transition probabilities. We provide a brief survey of the state of the art of the area and we compare the performance of the classic UCB policy of \cc{bkmdp97} with a new policy developed herein which we call MDP-Deterministic Minimum Empirical Divergence (MDP-DMED), and a method based on Posterior sampling (MDP-PS).
Abstract:This paper introduces the first asymptotically optimal strategy for a multi armed bandit (MAB) model under side constraints. The side constraints model situations in which bandit activations are limited by the availability of certain resources that are replenished at a constant rate. The main result involves the derivation of an asymptotic lower bound for the regret of feasible uniformly fast policies and the construction of policies that achieve this lower bound, under pertinent conditions. Further, we provide the explicit form of such policies for the case in which the unknown distributions are Normal with unknown means and known variances, for the case of Normal distributions with unknown means and unknown variances and for the case of arbitrary discrete distributions with finite support.
Abstract:The purpose of this paper is to provide further understanding into the structure of the sequential allocation ("stochastic multi-armed bandit", or MAB) problem by establishing probability one finite horizon bounds and convergence rates for the sample (or "pseudo") regret associated with two simple classes of allocation policies $\pi$. For any slowly increasing function $g$, subject to mild regularity constraints, we construct two policies (the $g$-Forcing, and the $g$-Inflated Sample Mean) that achieve a measure of regret of order $ O(g(n))$ almost surely as $n \to \infty$, bound from above and below. Additionally, almost sure upper and lower bounds on the remainder term are established. In the constructions herein, the function $g$ effectively controls the "exploration" of the classical "exploration/exploitation" tradeoff.
Abstract:We consider the \mnk{classical} problem of a controller activating (or sampling) sequentially from a finite number of $N \geq 2$ populations, specified by unknown distributions. Over some time horizon, at each time $n = 1, 2, \ldots$, the controller wishes to select a population to sample, with the goal of sampling from a population that optimizes some "score" function of its distribution, e.g., maximizing the expected sum of outcomes or minimizing variability. We define a class of \textit{Uniformly Fast (UF)} sampling policies and show, under mild regularity conditions, that there is an asymptotic lower bound for the expected total number of sub-optimal population activations. Then, we provide sufficient conditions under which a UCB policy is UF and asymptotically optimal, since it attains this lower bound. Explicit solutions are provided for a number of examples of interest, including general score functionals on unconstrained Pareto distributions (of potentially infinite mean), and uniform distributions of unknown support. Additional results on bandits of Normal distributions are also provided.
Abstract:We develop asymptotically optimal policies for the multi armed bandit (MAB), problem, under a cost constraint. This model is applicable in situations where each sample (or activation) from a population (bandit) incurs a known bandit dependent cost. Successive samples from each population are iid random variables with unknown distribution. The objective is to design a feasible policy for deciding from which population to sample from, so as to maximize the expected sum of outcomes of $n$ total samples or equivalently to minimize the regret due to lack on information on sample distributions, For this problem we consider the class of feasible uniformly fast (f-UF) convergent policies, that satisfy the cost constraint sample-path wise. We first establish a necessary asymptotic lower bound for the rate of increase of the regret function of f-UF policies. Then we construct a class of f-UF policies and provide conditions under which they are asymptotically optimal within the class of f-UF policies, achieving this asymptotic lower bound. At the end we provide the explicit form of such policies for the case in which the unknown distributions are Normal with unknown means and known variances.
Abstract:Inventory control with unknown demand distribution is considered, with emphasis placed on the case involving discrete nonperishable items. We focus on an adaptive policy which in every period uses, as much as possible, the optimal newsvendor ordering quantity for the empirical distribution learned up to that period. The policy is assessed using the regret criterion, which measures the price paid for ambiguity on demand distribution over $T$ periods. When there are guarantees on the latter's separation from the critical newsvendor parameter $\beta=b/(h+b)$, a constant upper bound on regret can be found. Without any prior information on the demand distribution, we show that the regret does not grow faster than the rate $T^{1/2+\epsilon}$ for any $\epsilon>0$. In view of a known lower bound, this is almost the best one could hope for. Simulation studies involving this along with other policies are also conducted.
Abstract:Consider the problem of a controller sampling sequentially from a finite number of $N \geq 2$ populations, specified by random variables $X^i_k$, $ i = 1,\ldots , N,$ and $k = 1, 2, \ldots$; where $X^i_k$ denotes the outcome from population $i$ the $k^{th}$ time it is sampled. It is assumed that for each fixed $i$, $\{ X^i_k \}_{k \geq 1}$ is a sequence of i.i.d. uniform random variables over some interval $[a_i, b_i]$, with the support (i.e., $a_i, b_i$) unknown to the controller. The objective is to have a policy $\pi$ for deciding, based on available data, from which of the $N$ populations to sample from at any time $n=1,2,\ldots$ so as to maximize the expected sum of outcomes of $n$ samples or equivalently to minimize the regret due to lack on information of the parameters $\{ a_i \}$ and $\{ b_i \}$. In this paper, we present a simple inflated sample mean (ISM) type policy that is asymptotically optimal in the sense of its regret achieving the asymptotic lower bound of Burnetas and Katehakis (1996). Additionally, finite horizon regret bounds are given.
Abstract:Consider the problem of sampling sequentially from a finite number of $N \geq 2$ populations, specified by random variables $X^i_k$, $ i = 1,\ldots , N,$ and $k = 1, 2, \ldots$; where $X^i_k$ denotes the outcome from population $i$ the $k^{th}$ time it is sampled. It is assumed that for each fixed $i$, $\{ X^i_k \}_{k \geq 1}$ is a sequence of i.i.d. normal random variables, with unknown mean $\mu_i$ and unknown variance $\sigma_i^2$. The objective is to have a policy $\pi$ for deciding from which of the $N$ populations to sample form at any time $n=1,2,\ldots$ so as to maximize the expected sum of outcomes of $n$ samples or equivalently to minimize the regret due to lack on information of the parameters $\mu_i$ and $\sigma_i^2$. In this paper, we present a simple inflated sample mean (ISM) index policy that is asymptotically optimal in the sense of Theorem 4 below. This resolves a standing open problem from Burnetas and Katehakis (1996). Additionally, finite horizon regret bounds are given.