Abstract:Vulnerability and risk assessment of neighborhoods is essential for effective disaster preparedness. Existing traditional systems, due to dependency on time-consuming and cost-intensive field surveying, do not provide a scalable way to decipher warnings and assess the precise extent of the risk at a hyper-local level. In this work, machine learning was used to automate the process of identifying dwellings and their type to build a potentially more effective disaster vulnerability assessment system. First, satellite imageries of low-income settlements and vulnerable areas in India were used to identify 7 different dwelling types. Specifically, we formulated the dwelling type classification as a semantic segmentation task and trained a U-net based neural network model, namely TernausNet, with the data we collected. Then a risk score assessment model was employed, using the determined dwelling type along with an inundation model of the regions. The entire pipeline was deployed to multiple locations prior to natural hazards in India in 2020. Post hoc ground-truth data from those regions was collected to validate the efficacy of this model which showed promising performance. This work can aid disaster response organizations and communities at risk by providing household-level risk information that can inform preemptive actions.
Abstract:Vocal entrainment is a social adaptation mechanism in human interaction, knowledge of which can offer useful insights to an individual's cognitive-behavioral characteristics. We propose a context-aware approach for measuring vocal entrainment in dyadic conversations. We use conformers(a combination of convolutional network and transformer) for capturing both short-term and long-term conversational context to model entrainment patterns in interactions across different domains. Specifically we use cross-subject attention layers to learn intra- as well as inter-personal signals from dyadic conversations. We first validate the proposed method based on classification experiments to distinguish between real(consistent) and fake(inconsistent/shuffled) conversations. Experimental results on interactions involving individuals with Autism Spectrum Disorder also show evidence of a statistically-significant association between the introduced entrainment measure and clinical scores relevant to symptoms, including across gender and age groups.
Abstract:Linguistic coordination is a well-established phenomenon in spoken conversations and often associated with positive social behaviors and outcomes. While there have been many attempts to measure lexical coordination or entrainment in literature, only a few have explored coordination in syntactic or semantic space. In this work, we attempt to combine these different aspects of coordination into a single measure by leveraging distances in a neural word representation space. In particular, we adopt the recently proposed Word Mover's Distance with word2vec embeddings and extend it to measure the dissimilarity in language used in multiple consecutive speaker turns. To validate our approach, we apply this measure for two case studies in the clinical psychology domain. We find that our proposed measure is correlated with the therapist's empathy towards their patient in Motivational Interviewing and with affective behaviors in Couples Therapy. In both case studies, our proposed metric exhibits higher correlation than previously proposed measures. When applied to the couples with relationship improvement, we also notice a significant decrease in the proposed measure over the course of therapy, indicating higher linguistic coordination.
Abstract:Entrainment is a known adaptation mechanism that causes interaction participants to adapt or synchronize their acoustic characteristics. Understanding how interlocutors tend to adapt to each other's speaking style through entrainment involves measuring a range of acoustic features and comparing those via multiple signal comparison methods. In this work, we present a turn-level distance measure obtained in an unsupervised manner using a Deep Neural Network (DNN) model, which we call Neural Entrainment Distance (NED). This metric establishes a framework that learns an embedding from the population-wide entrainment in an unlabeled training corpus. We use the framework for a set of acoustic features and validate the measure experimentally by showing its efficacy in distinguishing real conversations from fake ones created by randomly shuffling speaker turns. Moreover, we show real world evidence of the validity of the proposed measure. We find that high value of NED is associated with high ratings of emotional bond in suicide assessment interviews, which is consistent with prior studies.