Abstract:The increasing efficiency and compactness of deep learning architectures, together with hardware improvements, have enabled the complex and high-dimensional modelling of medical volumetric data at higher resolutions. Recently, Vector-Quantised Variational Autoencoders (VQ-VAE) have been proposed as an efficient generative unsupervised learning approach that can encode images to a small percentage of their initial size, while preserving their decoded fidelity. Here, we show a VQ-VAE inspired network can efficiently encode a full-resolution 3D brain volume, compressing the data to $0.825\%$ of the original size while maintaining image fidelity, and significantly outperforming the previous state-of-the-art. We then demonstrate that VQ-VAE decoded images preserve the morphological characteristics of the original data through voxel-based morphology and segmentation experiments. Lastly, we show that such models can be pre-trained and then fine-tuned on different datasets without the introduction of bias.
Abstract:We present, visualize and analyse the similarities and differences between the controversial topics related to "edit wars" identified in 10 different language versions of Wikipedia. After a brief review of the related work we describe the methods developed to locate, measure, and categorize the controversial topics in the different languages. Visualizations of the degree of overlap between the top 100 lists of most controversial articles in different languages and the content related to geographical locations will be presented. We discuss what the presented analysis and visualizations can tell us about the multicultural aspects of Wikipedia and practices of peer-production. Our results indicate that Wikipedia is more than just an encyclopaedia; it is also a window into convergent and divergent social-spatial priorities, interests and preferences.