Abstract:While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We release our code at: https://github.com/kuleshov-group/mdlm
Abstract:Joint analysis of multi-omic single-cell data across cohorts has significantly enhanced the comprehensive analysis of cellular processes. However, most of the existing approaches for this purpose require access to samples with complete modality availability, which is impractical in many real-world scenarios. In this paper, we propose (Single-Cell Cross-Cohort Cross-Category) integration, a novel framework that learns unified cell representations under domain shift without requiring full-modality reference samples. Our generative approach learns rich cross-modal and cross-domain relationships that enable imputation of these missing modalities. Through experiments on real-world multi-omic datasets, we demonstrate that offers a robust solution to single-cell tasks such as cell type clustering, cell type classification, and feature imputation.