Abstract:This study addresses the challenge of urban safety in New York City by examining the relationship between the built environment and crime rates using machine learning and a comprehensive dataset of street view images. We aim to identify how urban landscapes correlate with crime statistics, focusing on the characteristics of street views and their association with crime rates. The findings offer insights for urban planning and crime prevention, highlighting the potential of environmental design in enhancing public safety.
Abstract:Biomedical Question Answering aims to obtain an answer to the given question from the biomedical domain. Due to its high requirement of biomedical domain knowledge, it is difficult for the model to learn domain knowledge from limited training data. We propose a contextual embedding method that combines open-domain QA model \aoa and \biobert model pre-trained on biomedical domain data. We adopt unsupervised pre-training on large biomedical corpus and supervised fine-tuning on biomedical question answering dataset. Additionally, we adopt an MLP-based model weighting layer to automatically exploit the advantages of two models to provide the correct answer. The public dataset \biomrc constructed from PubMed corpus is used to evaluate our method. Experimental results show that our model outperforms state-of-the-art system by a large margin.