Abstract:Artificial intelligence is continuously seeking novel challenges and benchmarks to effectively measure performance and to advance the state-of-the-art. In this paper we introduce KANDY, a benchmarking framework that can be used to generate a variety of learning and reasoning tasks inspired by Kandinsky patterns. By creating curricula of binary classification tasks with increasing complexity and with sparse supervisions, KANDY can be used to implement benchmarks for continual and semi-supervised learning, with a specific focus on symbol compositionality. Classification rules are also provided in the ground truth to enable analysis of interpretable solutions. Together with the benchmark generation pipeline, we release two curricula, an easier and a harder one, that we propose as new challenges for the research community. With a thorough experimental evaluation, we show how both state-of-the-art neural models and purely symbolic approaches struggle with solving most of the tasks, thus calling for the application of advanced neuro-symbolic methods trained over time.
Abstract:The increasing complexity and unpredictability of many ICT scenarios let us envision that future systems will have to dynamically learn how to act and adapt to face evolving situations with little or no a priori knowledge, both at the level of individual components and at the collective level. In other words, such systems should become able to autonomously develop models of themselves and of their environment. Autonomous development includes: learning models of own capabilities; learning how to act purposefully towards the achievement of specific goals; and learning how to act collectively, i.e., accounting for the presence of others. In this paper, we introduce the vision of autonomous development in ICT systems, by framing its key concepts and by illustrating suitable application domains. Then, we overview the many research areas that are contributing or can potentially contribute to the realization of the vision, and identify some key research challenges.
Abstract:Transformers changed modern NLP in many ways. However, they can hardly exploit domain knowledge, and like other blackbox models, they lack interpretability. Unfortunately, structured knowledge injection, in the long run, risks to suffer from a knowledge acquisition bottleneck. We thus propose a memory enhancement of transformer models that makes use of unstructured domain knowledge expressed in plain natural language. An experimental evaluation conducted on two challenging NLP tasks demonstrates that our approach yields better performance and model interpretability than baseline transformer-based architectures.
Abstract:We propose a novel architecture for Graph Neural Networks that is inspired by the idea behind Tree Kernels of measuring similarity between trees by taking into account their common substructures, named fragments. By imposing a series of regularization constraints to the learning problem, we exploit a pooling mechanism that incorporates such notion of fragments within the node soft assignment function that produces the embeddings. We present an extensive experimental evaluation on a collection of sentence classification tasks conducted on several argument mining corpora, showing that the proposed approach performs well with respect to state-of-the-art techniques.
Abstract:We explore the use of residual networks and neural attention for argument mining and in particular link prediction. The method we propose makes no assumptions on document or argument structure. We propose a residual architecture that exploits attention, multi-task learning, and makes use of ensemble. We evaluate it on a challenging data set consisting of user-generated comments, as well as on two other datasets consisting of scientific publications. On the user-generated content dataset, our model outperforms state-of-the-art methods that rely on domain knowledge. On the scientific literature datasets it achieves results comparable to those yielded by BERT-based approaches but with a much smaller model size.
Abstract:Recent work has demonstrated how data-driven AI methods can leverage consumer protection by supporting the automated analysis of legal documents. However, a shortcoming of data-driven approaches is poor explainability. We posit that in this domain useful explanations of classifier outcomes can be provided by resorting to legal rationales. We thus consider several configurations of memory-augmented neural networks where rationales are given a special role in the modeling of context knowledge. Our results show that rationales not only contribute to improve the classification accuracy, but are also able to offer meaningful, natural language explanations of otherwise opaque classifier outcomes.
Abstract:As ML applications are becoming ever more pervasive, fully-trained systems are made increasingly available to a wide public, allowing end-users to submit queries with their own data, and to efficiently retrieve results. With increasingly sophisticated such services, a new challenge is how to scale up to evergrowing user bases. In this paper, we present a distributed architecture that could be exploited to parallelize a typical ML system pipeline. We propose a case study consisting of a text mining service and discuss how the method can be generalized to many similar applications. We demonstrate the significance of the computational gain boosted by the distributed architecture by way of an extensive experimental evaluation.
Abstract:Deep learning is bringing remarkable contributions to the field of argumentation mining, but the existing approaches still need to fill the gap towards performing advanced reasoning tasks. We illustrate how neural-symbolic and statistical relational learning could play a crucial role in the integration of symbolic and sub-symbolic methods to achieve this goal.
Abstract:Attention is an increasingly popular mechanism used in a wide range of neural architectures. Because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures for natural language processing, with a focus on architectures designed to work with vector representation of the textual data. We discuss the dimensions along which proposals differ, the possible uses of attention, and chart the major research activities and open challenges in the area.
Abstract:Internet users generate content at unprecedented rates. Building intelligent systems capable of discriminating useful content within this ocean of information is thus becoming a urgent need. In this paper, we aim to predict the usefulness of Amazon reviews, and to do this we exploit features coming from an off-the-shelf argumentation mining system. We argue that the usefulness of a review, in fact, is strictly related to its argumentative content, whereas the use of an already trained system avoids the costly need of relabeling a novel dataset. Results obtained on a large publicly available corpus support this hypothesis.