Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, USA, NOAA/OAR Geophysical Fluid Dynamics Laboratory, Ocean and Cryosphere Division, Princeton, USA, University of Washington, School of Oceanography, Seattle, USA
Abstract:Nobel laureate Philip Anderson and Elihu Abrahams once stated that, "even if machines did contribute to normal science, we see no mechanism by which they could create a Kuhnian revolution and thereby establish a new physical law." In this Perspective, we draw upon insights from the philosophies of science and artificial intelligence (AI) to propose necessary conditions of precisely such a mechanism for generating revolutionary mathematical theories. Recent advancements in AI suggest that satisfying the proposed necessary conditions by machines may be plausible; thus, our proposed necessary conditions also define a moonshot challenge. We also propose a heuristic definition of the intelligibility of mathematical theories to accelerate the development of machine theorists.
Abstract:Machine Learning has become a pervasive tool in climate science applications. However, current models fail to address nonstationarity induced by anthropogenic alterations in greenhouse emissions and do not routinely quantify the uncertainty of proposed projections. In this paper, we model the Atlantic Meridional Overturning Circulation (AMOC) which is of major importance to climate in Europe and the US East Coast by transporting warm water to these regions, and has the potential for abrupt collapse. We can generate arbitrarily extreme climate scenarios through arbitrary time scales which we then predict using neural networks. Our analysis shows that the AMOC is predictable using neural networks under a diverse set of climate scenarios. Further experiments reveal that MLPs and Deep Ensembles can learn the physics of the AMOC instead of imitating its progression through autocorrelation. With quantified uncertainty, an intriguing pattern of "spikes" before critical points of collapse in the AMOC casts doubt on previous analyses that predicted an AMOC collapse within this century. Our results show that Bayesian Neural Networks perform poorly compared to more dense architectures and care should be taken when applying neural networks to nonstationary scenarios such as climate projections. Further, our results highlight that big NN models might have difficulty in modeling global Earth System dynamics accurately and be successfully applied in nonstationary climate scenarios due to the physics being challenging for neural networks to capture.
Abstract:Complex ocean systems such as the Antarctic Circumpolar Current play key roles in the climate, and current models predict shifts in their strength and area under climate change. However, the physical processes underlying these changes are not well understood, in part due to the difficulty of characterizing and tracking changes in ocean physics in complex models. To understand changes in the Antarctic Circumpolar Current, we extend the method Tracking global Heating with Ocean Regimes (THOR) to a mesoscale eddy permitting climate model and identify regions of the ocean characterized by similar physics, called dynamical regimes, using readily accessible fields from climate models. To this end, we cluster grid cells into dynamical regimes and train an ensemble of neural networks to predict these regimes and track them under climate change. Finally, we leverage this new knowledge to elucidate the dynamics of regime shifts. Here we illustrate the value of this high-resolution version of THOR, which allows for mesoscale turbulence, with a case study of the Antarctic Circumpolar Current and its interactions with the Pacific-Antarctic Ridge. In this region, THOR specifically reveals a shift in dynamical regime under climate change driven by changes in wind stress and interactions with bathymetry. Using this knowledge to guide further exploration, we find that as the Antarctic Circumpolar Current shifts north under intensifying wind stress, the dominant dynamical role of bathymetry weakens and the flow strengthens.
Abstract:The trustworthiness of neural networks is often challenged because they lack the ability to express uncertainty and explain their skill. This can be problematic given the increasing use of neural networks in high stakes decision-making such as in climate change applications. We address both issues by successfully implementing a Bayesian Neural Network (BNN), where parameters are distributions rather than deterministic, and applying novel implementations of explainable AI (XAI) techniques. The uncertainty analysis from the BNN provides a comprehensive overview of the prediction more suited to practitioners' needs than predictions from a classical neural network. Using a BNN means we can calculate the entropy (i.e. uncertainty) of the predictions and determine if the probability of an outcome is statistically significant. To enhance trustworthiness, we also spatially apply the two XAI techniques of Layer-wise Relevance Propagation (LRP) and SHapley Additive exPlanation (SHAP) values. These XAI methods reveal the extent to which the BNN is suitable and/or trustworthy. Using two techniques gives a more holistic view of BNN skill and its uncertainty, as LRP considers neural network parameters, whereas SHAP considers changes to outputs. We verify these techniques using comparison with intuition from physical theory. The differences in explanation identify potential areas where new physical theory guided studies are needed.
Abstract:The advent of big data has vast potential for discovery in natural phenomena ranging from climate science to medicine, but overwhelming complexity stymies insight. Existing theory is often not able to succinctly describe salient phenomena, and progress has largely relied on ad hoc definitions of dynamical regimes to guide and focus exploration. We present a formal definition in which the identification of dynamical regimes is formulated as an optimization problem, and we propose an intelligible objective function. Furthermore, we propose an unsupervised learning framework which eliminates the need for a priori knowledge and ad hoc definitions; instead, the user need only choose appropriate clustering and dimensionality reduction algorithms, and this choice can be guided using our proposed objective function. We illustrate its applicability with example problems drawn from ocean dynamics, tumor angiogenesis, and turbulent boundary layers. Our method is a step towards unbiased data exploration that allows serendipitous discovery within dynamical systems, with the potential to propel the physical sciences forward.
Abstract:Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and also for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community.
Abstract:We outline a perspective of an entirely new research branch in Earth and climate sciences, where deep neural networks and Earth system models are dismantled as individual methodological approaches and reassembled as learning, self-validating, and interpretable Earth system model-network hybrids. Following this path, we coin the term "Neural Earth System Modelling" (NESYM) and highlight the necessity of a transdisciplinary discussion platform, bringing together Earth and climate scientists, big data analysts, and AI experts. We examine the concurrent potential and pitfalls of Neural Earth System Modelling and discuss the open question whether artificial intelligence will not only infuse Earth system modelling, but ultimately render them obsolete.