German Climate Computing Center DKRZ, Hamburg, Germany
Abstract:Obtaining accurate estimates of uncertainty in climate scenarios often requires generating large ensembles of high-resolution climate simulations, a computationally expensive and memory intensive process. To address this challenge, we train a novel generative deep learning approach on extensive sets of climate simulations. The model consists of two components: a variational autoencoder for dimensionality reduction and a denoising diffusion probabilistic model that generates multiple ensemble members. We validate our model on the Max Planck Institute Grand Ensemble and show that it achieves good agreement with the original ensemble in terms of variability. By leveraging the latent space representation, our model can rapidly generate large ensembles on-the-fly with minimal memory requirements, which can significantly improve the efficiency of uncertainty quantification in climate simulations.
Abstract:Using the nonlinear shallow water equations as benchmark, we demonstrate that a simulation with the ICON-O ocean model with a 20km resolution that is frequently corrected by a U-net-type neural network can achieve discretization errors of a simulation with 10km resolution. The network, originally developed for image-based super-resolution in post-processing, is trained to compute the difference between solutions on both meshes and is used to correct the coarse mesh every 12h. Our setup is the Galewsky test case, modeling transition of a barotropic instability into turbulent flow. We show that the ML-corrected coarse resolution run correctly maintains a balance flow and captures the transition to turbulence in line with the higher resolution simulation. After 8 day of simulation, the $L_2$-error of the corrected run is similar to a simulation run on the finer mesh. While mass is conserved in the corrected runs, we observe some spurious generation of kinetic energy.
Abstract:We outline a perspective of an entirely new research branch in Earth and climate sciences, where deep neural networks and Earth system models are dismantled as individual methodological approaches and reassembled as learning, self-validating, and interpretable Earth system model-network hybrids. Following this path, we coin the term "Neural Earth System Modelling" (NESYM) and highlight the necessity of a transdisciplinary discussion platform, bringing together Earth and climate scientists, big data analysts, and AI experts. We examine the concurrent potential and pitfalls of Neural Earth System Modelling and discuss the open question whether artificial intelligence will not only infuse Earth system modelling, but ultimately render them obsolete.