Abstract:Obtaining accurate estimates of uncertainty in climate scenarios often requires generating large ensembles of high-resolution climate simulations, a computationally expensive and memory intensive process. To address this challenge, we train a novel generative deep learning approach on extensive sets of climate simulations. The model consists of two components: a variational autoencoder for dimensionality reduction and a denoising diffusion probabilistic model that generates multiple ensemble members. We validate our model on the Max Planck Institute Grand Ensemble and show that it achieves good agreement with the original ensemble in terms of variability. By leveraging the latent space representation, our model can rapidly generate large ensembles on-the-fly with minimal memory requirements, which can significantly improve the efficiency of uncertainty quantification in climate simulations.
Abstract:Using the nonlinear shallow water equations as benchmark, we demonstrate that a simulation with the ICON-O ocean model with a 20km resolution that is frequently corrected by a U-net-type neural network can achieve discretization errors of a simulation with 10km resolution. The network, originally developed for image-based super-resolution in post-processing, is trained to compute the difference between solutions on both meshes and is used to correct the coarse mesh every 12h. Our setup is the Galewsky test case, modeling transition of a barotropic instability into turbulent flow. We show that the ML-corrected coarse resolution run correctly maintains a balance flow and captures the transition to turbulence in line with the higher resolution simulation. After 8 day of simulation, the $L_2$-error of the corrected run is similar to a simulation run on the finer mesh. While mass is conserved in the corrected runs, we observe some spurious generation of kinetic energy.
Abstract:Conversational artificial intelligence (AI) disrupts how humans interact with technology. Recently, OpenAI introduced ChatGPT, a state-of-the-art dialogue model that can converse with its human counterparts with unprecedented capabilities. ChatGPT has witnessed tremendous attention from the media, academia, industry, and the general public, attracting more than a million users within days of its release. However, its explosive adoption for information search and as an automated decision aid underscores the importance to understand its limitations and biases. This paper focuses on one of democratic society's most important decision-making processes: political elections. Prompting ChatGPT with 630 political statements from two leading voting advice applications and the nation-agnostic political compass test in three pre-registered experiments, we uncover ChatGPT's pro-environmental, left-libertarian ideology. For example, ChatGPT would impose taxes on flights, restrict rent increases, and legalize abortion. In the 2021 elections, it would have voted most likely for the Greens both in Germany (B\"undnis 90/Die Gr\"unen) and in the Netherlands (GroenLinks). Our findings are robust when negating the prompts, reversing the order of the statements, varying prompt formality, and across languages (English, German, Dutch, and Spanish). We conclude by discussing the implications of politically biased conversational AI on society.