Abstract:In this report, we explore the ability of language model agents to acquire resources, create copies of themselves, and adapt to novel challenges they encounter in the wild. We refer to this cluster of capabilities as "autonomous replication and adaptation" or ARA. We believe that systems capable of ARA could have wide-reaching and hard-to-anticipate consequences, and that measuring and forecasting ARA may be useful for informing measures around security, monitoring, and alignment. Additionally, once a system is capable of ARA, placing bounds on a system's capabilities may become significantly more difficult. We construct four simple example agents that combine language models with tools that allow them to take actions in the world. We then evaluate these agents on 12 tasks relevant to ARA. We find that these language model agents can only complete the easiest tasks from this list, although they make some progress on the more challenging tasks. Unfortunately, these evaluations are not adequate to rule out the possibility that near-future agents will be capable of ARA. In particular, we do not think that these evaluations provide good assurance that the ``next generation'' of language models (e.g. 100x effective compute scaleup on existing models) will not yield agents capable of ARA, unless intermediate evaluations are performed during pretraining. Relatedly, we expect that fine-tuning of the existing models could produce substantially more competent agents, even if the fine-tuning is not directly targeted at ARA.
Abstract:This paper presents a methodology and toolkit for creating a rule-based multi-domain conversational agent for transactions from (1) language annotations of the domains' database schemas and APIs and (2) a couple of hundreds of annotated human dialogues. There is no need for a large annotated training set, which is expensive to acquire. The toolkit uses a pre-defined abstract dialogue state machine to synthesize millions of dialogues based on the domains' information. The annotated and synthesized data are used to train a contextual semantic parser that interprets the user's latest utterance in the context of a formal representation of the conversation up to that point. Developers can refine the state machine to achieve higher accuracy. On the MultiWOZ benchmark, we achieve over 71% turn-by-turn slot accuracy on a cleaned, reannotated test set, without using any of the original training data. Our state machine can model 96% of the human agent turns. Our training strategy improves by 9% over a baseline that uses the same amount of hand-labeled data, showing the benefit of synthesizing data using the state machine.