Abstract:In the realm of computational knowledge representation, Knowledge Graph Reasoning (KG-R) stands at the forefront of facilitating sophisticated inferential capabilities across multifarious domains. The quintessence of this research elucidates the employment of reinforcement learning (RL) strategies, notably the REINFORCE algorithm, to navigate the intricacies inherent in multi-hop KG-R. This investigation critically addresses the prevalent challenges introduced by the inherent incompleteness of Knowledge Graphs (KGs), which frequently results in erroneous inferential outcomes, manifesting as both false negatives and misleading positives. By partitioning the Unified Medical Language System (UMLS) benchmark dataset into rich and sparse subsets, we investigate the efficacy of pre-trained BERT embeddings and Prompt Learning methodologies to refine the reward shaping process. This approach not only enhances the precision of multi-hop KG-R but also sets a new precedent for future research in the field, aiming to improve the robustness and accuracy of knowledge inference within complex KG frameworks. Our work contributes a novel perspective to the discourse on KG reasoning, offering a methodological advancement that aligns with the academic rigor and scholarly aspirations of the Natural journal, promising to invigorate further advancements in the realm of computational knowledge representation.
Abstract:At present, the incidence and fatality rate of lung cancer in China rank first among all malignant tumors. Despite the continuous development and improvement of China's medical level, the overall 5-year survival rate of lung cancer patients is still lower than 20% and is staged. A number of studies have confirmed that early diagnosis and treatment of early stage lung cancer is of great significance to improve the prognosis of patients. In recent years, artificial intelligence technology has gradually begun to be applied in oncology. ai is used in cancer screening, clinical diagnosis, radiation therapy (image acquisition, at-risk organ segmentation, image calibration and delivery) and other aspects of rapid development. However, whether medical ai can be socialized depends on the public's attitude and acceptance to a certain extent. However, at present, there are few studies on the diagnosis of early lung cancer by AI technology combined with SCT scanning. In view of this, this study applied the combined method in early lung cancer screening, aiming to find a safe and efficient screening mode and provide a reference for clinical diagnosis and treatment.
Abstract:In the realm of patent document analysis, assessing semantic similarity between phrases presents a significant challenge, notably amplifying the inherent complexities of Cooperative Patent Classification (CPC) research. Firstly, this study addresses these challenges, recognizing early CPC work while acknowledging past struggles with language barriers and document intricacy. Secondly, it underscores the persisting difficulties of CPC research. To overcome these challenges and bolster the CPC system, This paper presents two key innovations. Firstly, it introduces an ensemble approach that incorporates four BERT-related models, enhancing semantic similarity accuracy through weighted averaging. Secondly, a novel text preprocessing method tailored for patent documents is introduced, featuring a distinctive input structure with token scoring that aids in capturing semantic relationships during CPC context training, utilizing BCELoss. Our experimental findings conclusively establish the effectiveness of both our Ensemble Model and novel text processing strategies when deployed on the U.S. Patent Phrase to Phrase Matching dataset.
Abstract:The process of transforming input images into corresponding textual explanations stands as a crucial and complex endeavor within the domains of computer vision and natural language processing. In this paper, we propose an innovative ensemble approach that harnesses the capabilities of Contrastive Language-Image Pretraining models.
Abstract:This paper focuses on the analysis of the application effectiveness of the integration of deep learning and computer vision technologies. Deep learning achieves a historic breakthrough by constructing hierarchical neural networks, enabling end-to-end feature learning and semantic understanding of images. The successful experiences in the field of computer vision provide strong support for training deep learning algorithms. The tight integration of these two fields has given rise to a new generation of advanced computer vision systems, significantly surpassing traditional methods in tasks such as machine vision image classification and object detection. In this paper, typical image classification cases are combined to analyze the superior performance of deep neural network models while also pointing out their limitations in generalization and interpretability, proposing directions for future improvements. Overall, the efficient integration and development trend of deep learning with massive visual data will continue to drive technological breakthroughs and application expansion in the field of computer vision, making it possible to build truly intelligent machine vision systems. This deepening fusion paradigm will powerfully promote unprecedented tasks and functions in computer vision, providing stronger development momentum for related disciplines and industries.