Abstract:In the pursuit of environmental sustainability, the aviation industry faces the challenge of minimizing its ecological footprint. Among the key solutions is contrail avoidance, targeting the linear ice-crystal clouds produced by aircraft exhaust. These contrails exacerbate global warming by trapping atmospheric heat, necessitating precise segmentation and comprehensive analysis of contrail images to gauge their environmental impact. However, this segmentation task is complex due to the varying appearances of contrails under different atmospheric conditions and potential misalignment issues in predictive modeling. This paper presents an innovative deep-learning approach utilizing the efficient net-b4 encoder for feature extraction, seamlessly integrating misalignment correction, soft labeling, and pseudo-labeling techniques to enhance the accuracy and efficiency of contrail detection in satellite imagery. The proposed methodology aims to redefine contrail image analysis and contribute to the objectives of sustainable aviation by providing a robust framework for precise contrail detection and analysis in satellite imagery, thus aiding in the mitigation of aviation's environmental impact.
Abstract:At present, the incidence and fatality rate of lung cancer in China rank first among all malignant tumors. Despite the continuous development and improvement of China's medical level, the overall 5-year survival rate of lung cancer patients is still lower than 20% and is staged. A number of studies have confirmed that early diagnosis and treatment of early stage lung cancer is of great significance to improve the prognosis of patients. In recent years, artificial intelligence technology has gradually begun to be applied in oncology. ai is used in cancer screening, clinical diagnosis, radiation therapy (image acquisition, at-risk organ segmentation, image calibration and delivery) and other aspects of rapid development. However, whether medical ai can be socialized depends on the public's attitude and acceptance to a certain extent. However, at present, there are few studies on the diagnosis of early lung cancer by AI technology combined with SCT scanning. In view of this, this study applied the combined method in early lung cancer screening, aiming to find a safe and efficient screening mode and provide a reference for clinical diagnosis and treatment.
Abstract:The objective of this study is to improve automated feedback tools designed for English Language Learners (ELLs) through the utilization of data science techniques encompassing machine learning, natural language processing, and educational data analytics. Automated essay scoring (AES) research has made strides in evaluating written essays, but it often overlooks the specific needs of English Language Learners (ELLs) in language development. This study explores the application of BERT-related techniques to enhance the assessment of ELLs' writing proficiency within AES. To address the specific needs of ELLs, we propose the use of DeBERTa, a state-of-the-art neural language model, for improving automated feedback tools. DeBERTa, pretrained on large text corpora using self-supervised learning, learns universal language representations adaptable to various natural language understanding tasks. The model incorporates several innovative techniques, including adversarial training through Adversarial Weights Perturbation (AWP) and Metric-specific AttentionPooling (6 kinds of AP) for each label in the competition. The primary focus of this research is to investigate the impact of hyperparameters, particularly the adversarial learning rate, on the performance of the model. By fine-tuning the hyperparameter tuning process, including the influence of 6AP and AWP, the resulting models can provide more accurate evaluations of language proficiency and support tailored learning tasks for ELLs. This work has the potential to significantly benefit ELLs by improving their English language proficiency and facilitating their educational journey.
Abstract:In the realm of patent document analysis, assessing semantic similarity between phrases presents a significant challenge, notably amplifying the inherent complexities of Cooperative Patent Classification (CPC) research. Firstly, this study addresses these challenges, recognizing early CPC work while acknowledging past struggles with language barriers and document intricacy. Secondly, it underscores the persisting difficulties of CPC research. To overcome these challenges and bolster the CPC system, This paper presents two key innovations. Firstly, it introduces an ensemble approach that incorporates four BERT-related models, enhancing semantic similarity accuracy through weighted averaging. Secondly, a novel text preprocessing method tailored for patent documents is introduced, featuring a distinctive input structure with token scoring that aids in capturing semantic relationships during CPC context training, utilizing BCELoss. Our experimental findings conclusively establish the effectiveness of both our Ensemble Model and novel text processing strategies when deployed on the U.S. Patent Phrase to Phrase Matching dataset.
Abstract:The process of transforming input images into corresponding textual explanations stands as a crucial and complex endeavor within the domains of computer vision and natural language processing. In this paper, we propose an innovative ensemble approach that harnesses the capabilities of Contrastive Language-Image Pretraining models.
Abstract:This paper focuses on the analysis of the application effectiveness of the integration of deep learning and computer vision technologies. Deep learning achieves a historic breakthrough by constructing hierarchical neural networks, enabling end-to-end feature learning and semantic understanding of images. The successful experiences in the field of computer vision provide strong support for training deep learning algorithms. The tight integration of these two fields has given rise to a new generation of advanced computer vision systems, significantly surpassing traditional methods in tasks such as machine vision image classification and object detection. In this paper, typical image classification cases are combined to analyze the superior performance of deep neural network models while also pointing out their limitations in generalization and interpretability, proposing directions for future improvements. Overall, the efficient integration and development trend of deep learning with massive visual data will continue to drive technological breakthroughs and application expansion in the field of computer vision, making it possible to build truly intelligent machine vision systems. This deepening fusion paradigm will powerfully promote unprecedented tasks and functions in computer vision, providing stronger development momentum for related disciplines and industries.