Abstract:Large language models (LLMs) use function calls to interface with external tools and data source. However, the current approach to LLM function calling is inherently synchronous, where each call blocks LLM inference, limiting LLM operation and concurrent function execution. In this work, we propose AsyncLM, a system for asynchronous LLM function calling. AsyncLM improves LLM's operational efficiency by enabling LLMs to generate and execute function calls concurrently. Instead of waiting for each call's completion, AsyncLM introduces an interrupt mechanism to asynchronously notify the LLM in-flight when function calls return. We design an in-context protocol for function calls and interrupts, provide fine-tuning strategy to adapt LLMs to the interrupt semantics, and implement these mechanisms efficiently on LLM inference process. We demonstrate that AsyncLM can reduce end-to-end task completion latency from 1.6x-5.4x compared to synchronous function calling on a set of benchmark tasks in the Berkeley function calling leaderboard (BFCL). Furthermore, we discuss how interrupt mechanisms can be extended to enable novel human-LLM or LLM-LLM interactions.
Abstract:Our work tackles the challenge of securing user inputs in cloud-based large language model (LLM) services while ensuring output consistency, model confidentiality, and compute efficiency. We introduce Secure Multi-party Decoding (SMD), which leverages confidential computing to confine user prompts to a trusted execution environment, namely a confidential virtual machine (CVM), while allowing service providers to generate tokens efficiently. We also introduce a novel cryptographic method, Prompt Obfuscation (PO), to ensure robustness against reconstruction attacks on SMD. We demonstrate that our approach preserves both prompt confidentiality and LLM serving efficiency. Our solution can enable privacy-preserving cloud LLM services that handle sensitive prompts, such as clinical records, financial data, and personal information.
Abstract:In recent years, Cross-Domain Recommendation (CDR) has drawn significant attention, which utilizes user data from multiple domains to enhance the recommendation performance. However, current CDR methods require sharing user data across domains, thereby violating the General Data Protection Regulation (GDPR). Consequently, numerous approaches have been proposed for Federated Cross-Domain Recommendation (FedCDR). Nevertheless, the data heterogeneity across different domains inevitably influences the overall performance of federated learning. In this study, we propose FedHCDR, a novel Federated Cross-Domain Recommendation framework with Hypergraph signal decoupling. Specifically, to address the data heterogeneity across domains, we introduce an approach called hypergraph signal decoupling (HSD) to decouple the user features into domain-exclusive and domain-shared features. The approach employs high-pass and low-pass hypergraph filters to decouple domain-exclusive and domain-shared user representations, which are trained by the local-global bi-directional transfer algorithm. In addition, a hypergraph contrastive learning (HCL) module is devised to enhance the learning of domain-shared user relationship information by perturbing the user hypergraph. Extensive experiments conducted on three real-world scenarios demonstrate that FedHCDR outperforms existing baselines significantly.
Abstract:Commanding a drone with a natural language is not only user-friendly but also opens the door for emerging language agents to control the drone. Emerging large language models (LLMs) provide a previously impossible opportunity to automatically translate a task description in a natural language to a program that can be executed by the drone. However, powerful LLMs and their vision counterparts are limited in three important ways. First, they are only available as cloud-based services. Sending images to the cloud raises privacy concerns. Second, they are expensive, costing proportionally to the request size. Finally, without expensive fine-tuning, existing LLMs are quite limited in their capability of writing a program for specialized systems like drones. In this paper, we present a system called TypeFly that tackles the above three problems using a combination of edge-based vision intelligence, novel programming language design, and prompt engineering. Instead of the familiar Python, TypeFly gets a cloud-based LLM service to write a program in a small, custom language called MiniSpec, based on task and scene descriptions in English. Such MiniSpec programs are not only succinct (and therefore efficient) but also able to consult the LLM during their execution using a special skill called query. Using a set of increasingly challenging drone tasks, we show that design choices made by TypeFly can reduce both the cost of LLM service and the task execution time by more than 2x. More importantly, query and prompt engineering techniques contributed by TypeFly significantly improve the chance of success of complex tasks.
Abstract:We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing attention states across different LLM prompts. Many input prompts have overlapping text segments, such as system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing and storing the attention states of these frequently occurring text segments on the inference server, we can efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly define such reusable text segments, called prompt modules. The schema ensures positional accuracy during attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce latency in time-to-first-token, especially for longer prompts such as document-based question answering and recommendations. The improvements range from 8x for GPU-based inference to 60x for CPU-based inference, all while maintaining output accuracy and without the need for model parameter modifications.
Abstract:We present POD, a smartphone that flies, as a new way to achieve hands-free, eyes-up mobile computing. Unlike existing drone-carried user interfaces, POD features a smartphone-sized display and the computing and sensing power of a modern smartphone. We share our experience in building a prototype of POD, discuss the technical challenges facing it, and describe early results toward addressing them.
Abstract:The remarkable success of machine learning has fostered a growing number of cloud-based intelligent services for mobile users. Such a service requires a user to send data, e.g. image, voice and video, to the provider, which presents a serious challenge to user privacy. To address this, prior works either obfuscate the data, e.g. add noise and remove identity information, or send representations extracted from the data, e.g. anonymized features. They struggle to balance between the service utility and data privacy because obfuscated data reduces utility and extracted representation may still reveal sensitive information. This work departs from prior works in methodology: we leverage adversarial learning to a better balance between privacy and utility. We design a \textit{representation encoder} that generates the feature representations to optimize against the privacy disclosure risk of sensitive information (a measure of privacy) by the \textit{privacy adversaries}, and concurrently optimize with the task inference accuracy (a measure of utility) by the \textit{utility discriminator}. The result is the privacy adversarial network (\systemname), a novel deep model with the new training algorithm, that can automatically learn representations from the raw data. Intuitively, PAN adversarially forces the extracted representations to only convey the information required by the target task. Surprisingly, this constitutes an implicit regularization that actually improves task accuracy. As a result, PAN achieves better utility and better privacy at the same time! We report extensive experiments on six popular datasets and demonstrate the superiority of \systemname compared with alternative methods reported in prior work.
Abstract:The remarkable success of machine learning, especially deep learning, has produced a variety of cloud-based services for mobile users. Such services require an end user to send data to the service provider, which presents a serious challenge to end-user privacy. To address this concern, prior works either add noise to the data or send features extracted from the raw data. They struggle to balance between the utility and privacy because added noise reduces utility and raw data can be reconstructed from extracted features. This work represents a methodical departure from prior works: we balance between a measure of privacy and another of utility by leveraging adversarial learning to find a sweeter tradeoff. We design an encoder that optimizes against the reconstruction error (a measure of privacy), adversarially by a Decoder, and the inference accuracy (a measure of utility) by a Classifier. The result is RAN, a novel deep model with a new training algorithm that automatically extracts features for classification that are both private and useful. It turns out that adversarially forcing the extracted features to only conveys the intended information required by classification leads to an implicit regularization leading to better classification accuracy than the original model which completely ignores privacy. Thus, we achieve better privacy with better utility, a surprising possibility in machine learning! We conducted extensive experiments on five popular datasets over four training schemes, and demonstrate the superiority of RAN compared with existing alternatives.