Abstract:Photoacoustic tomography (PAT) is a newly emerged imaging modality which enables both high optical contrast and acoustic depth of penetration. Reconstructing images of photoacoustic tomography from limited amount of senser data is among one of the major challenges in photoacoustic imaging. Previous works based on deep learning were trained in supervised fashion, which directly map the input partially known sensor data to the ground truth reconstructed from full field of view. Recently, score-based generative models played an increasingly significant role in generative modeling. Leveraging this probabilistic model, we proposed Rotation Consistency Constrained Score-based Generative Model (RCC-SGM), which recovers the PAT images by iterative sampling between Langevin dynamics and a constraint term utilizing the rotation consistency between the images and the measurements. Our proposed method can generalize to different measurement processes (32.29 PSNR with 16 measurements under random sampling, whereas 28.50 for supervised counterpart), while supervised methods need to train on specific inverse mappings.
Abstract:ChatGPT demonstrates immense potential to transform software engineering (SE) by exhibiting outstanding performance in tasks such as code and document generation. However, the high reliability and risk control requirements of SE make the lack of interpretability for ChatGPT a concern. To address this issue, we carried out a study evaluating ChatGPT's capabilities and limitations in SE. We broke down the abilities needed for AI models to tackle SE tasks into three categories: 1) syntax understanding, 2) static behavior understanding, and 3) dynamic behavior understanding. Our investigation focused on ChatGPT's ability to comprehend code syntax and semantic structures, including abstract syntax trees (AST), control flow graphs (CFG), and call graphs (CG). We assessed ChatGPT's performance on cross-language tasks involving C, Java, Python, and Solidity. Our findings revealed that while ChatGPT excels at understanding code syntax (AST), it struggles with comprehending code semantics, particularly dynamic semantics. We conclude that ChatGPT possesses capabilities akin to an Abstract Syntax Tree (AST) parser, demonstrating initial competencies in static code analysis. Additionally, our study highlights that ChatGPT is susceptible to hallucination when interpreting code semantic structures and fabricating non-existent facts. These results underscore the need to explore methods for verifying the correctness of ChatGPT's outputs to ensure its dependability in SE. More importantly, our study provide an iniital answer why the generated codes from LLMs are usually synatx correct but vulnerabale.
Abstract:Accurate image reconstruction is crucial for photoacoustic (PA) computed tomography (PACT). Recently, deep learning has been used to reconstruct the PA image with a supervised scheme, which requires high-quality images as ground truth labels. In practice, there are inevitable trade-offs between cost and performance since the use of more channels is an expensive strategy to access more measurements. Here, we propose a cross-domain unsupervised reconstruction (CDUR) strategy with a pure transformer model, which overcomes the lack of ground truth labels from limited PA measurements. The proposed approach exploits the equivariance of PACT to achieve high performance with a smaller number of channels. We implement a self-supervised reconstruction in a model-based form. Meanwhile, we also leverage the self-supervision to enforce the measurement and image consistency on three partitions of measured PA data, by randomly masking different channels. We find that dynamically masking a high proportion of the channels, e.g., 80%, yields nontrivial self-supervisors in both image and signal domains, which decrease the multiplicity of the pseudo solution to efficiently reconstruct the image from fewer PA measurements with minimum error of the image. Experimental results on in-vivo PACT dataset of mice demonstrate the potential of our unsupervised framework. In addition, our method shows a high performance (0.83 structural similarity index (SSIM) in the extreme sparse case with 13 channels), which is close to that of supervised scheme (0.77 SSIM with 16 channels). On top of all the advantages, our method may be deployed on different trainable models in an end-to-end manner.