Abstract:Accurate forecasting and analysis of emerging pandemics play a crucial role in effective public health management and decision-making. Traditional approaches primarily rely on epidemiological data, overlooking other valuable sources of information that could act as sensors or indicators of pandemic patterns. In this paper, we propose a novel framework called MGL4MEP that integrates temporal graph neural networks and multi-modal data for learning and forecasting. We incorporate big data sources, including social media content, by utilizing specific pre-trained language models and discovering the underlying graph structure among users. This integration provides rich indicators of pandemic dynamics through learning with temporal graph neural networks. Extensive experiments demonstrate the effectiveness of our framework in pandemic forecasting and analysis, outperforming baseline methods across different areas, pandemic situations, and prediction horizons. The fusion of temporal graph learning and multi-modal data enables a comprehensive understanding of the pandemic landscape with less time lag, cheap cost, and more potential information indicators.
Abstract:While Named Entity Recognition (NER) is a widely studied task, making inferences of entities with only a few labeled data has been challenging, especially for entities with nested structures. Unlike flat entities, entities and their nested entities are more likely to have similar semantic feature representations, drastically increasing difficulties in classifying different entity categories in the few-shot setting. Although prior work has briefly discussed nested structures in the context of few-shot learning, to our best knowledge, this paper is the first one specifically dedicated to studying the few-shot nested NER task. Leveraging contextual dependency to distinguish nested entities, we propose a Biaffine-based Contrastive Learning (BCL) framework. We first design a Biaffine span representation module for learning the contextual span dependency representation for each entity span rather than only learning its semantic representation. We then merge these two representations by the residual connection to distinguish nested entities. Finally, we build a contrastive learning framework to adjust the representation distribution for larger margin boundaries and more generalized domain transfer learning ability. We conducted experimental studies on three English, German, and Russian nested NER datasets. The results show that the BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
Abstract:Multi-feature data analysis (e.g., on Facebook, LinkedIn) is challenging especially if one wants to do it efficiently and retain the flexibility by choosing features of interest for analysis. Features (e.g., age, gender, relationship, political view etc.) can be explicitly given from datasets, but also can be derived from content (e.g., political view based on Facebook posts). Analysis from multiple perspectives is needed to understand the datasets (or subsets of it) and to infer meaningful knowledge. For example, the influence of age, location, and marital status on political views may need to be inferred separately (or in combination). In this paper, we adapt multilayer network (MLN) analysis, a nontraditional approach, to model the Facebook datasets, integrate content analysis, and conduct analysis, which is driven by a list of desired application based queries. Our experimental analysis shows the flexibility and efficiency of the proposed approach when modeling and analyzing datasets with multiple features.
Abstract:This paper firstly proposes a simple yet efficient generalized approach to apply differential privacy to text representation (i.e., word embedding). Based on it, we propose a user-level approach to learn personalized differentially private word embedding model on user generated contents (UGC). To our best knowledge, this is the first work of learning user-level differentially private word embedding model from text for sharing. The proposed approaches protect the privacy of the individual from re-identification, especially provide better trade-off of privacy and data utility on UGC data for sharing. The experimental results show that the trained embedding models are applicable for the classic text analysis tasks (e.g., regression). Moreover, the proposed approaches of learning differentially private embedding models are both framework- and data- independent, which facilitates the deployment and sharing. The source code is available at https://github.com/sonvx/dpText.
Abstract:In this paper, we introduce a comprehensive toolkit, ETNLP, which can evaluate, extract, and visualize multiple sets of pre-trained word embeddings. First, for evaluation, ETNLP analyses the quality of pre-trained embeddings based on an input word analogy list. Second, for extraction ETNLP provides a subset of the embeddings to be used in the downstream NLP tasks. Finally, ETNLP has a visualization module which is for exploring the embedded words interactively. We demonstrate the effectiveness of ETNLP on our pre-trained word embeddings in Vietnamese. Specifically, we create a large Vietnamese word analogy list to evaluate the embeddings. We then utilize the pre-trained embeddings for the name entity recognition (NER) task in Vietnamese and achieve the new state-of-the-art results on a benchmark dataset for the NER task. A video demonstration of ETNLP is available at https://vimeo.com/317599106. The source code and data are available at https: //github.com/vietnlp/etnlp.
Abstract:To protect user privacy in data analysis, a state-of-the-art strategy is differential privacy in which scientific noise is injected into the real analysis output. The noise masks individual's sensitive information contained in the dataset. However, determining the amount of noise is a key challenge, since too much noise will destroy data utility while too little noise will increase privacy risk. Though previous research works have designed some mechanisms to protect data privacy in different scenarios, most of the existing studies assume uniform privacy concerns for all individuals. Consequently, putting an equal amount of noise to all individuals leads to insufficient privacy protection for some users, while over-protecting others. To address this issue, we propose a self-adaptive approach for privacy concern detection based on user personality. Our experimental studies demonstrate the effectiveness to address a suitable personalized privacy protection for cold-start users (i.e., without their privacy-concern information in training data).
Abstract:In this paper, we aim to reveal the impact of lexical-semantic resources, used in particular for word sense disambiguation and sense-level semantic categorization, on automatic personality classification task. While stylistic features (e.g., part-of-speech counts) have been shown their power in this task, the impact of semantics beyond targeted word lists is relatively unexplored. We propose and extract three types of lexical-semantic features, which capture high-level concepts and emotions, overcoming the lexical gap of word n-grams. Our experimental results are comparable to state-of-the-art methods, while no personality-specific resources are required.