Abstract:Long-context processing is a critical ability that constrains the applicability of large language models. Although there exist various methods devoted to enhancing the long-context processing ability of large language models (LLMs), they are developed in an isolated manner and lack systematic analysis and integration of their strengths, hindering further developments. In this paper, we introduce UniMem, a unified framework that reformulates existing long-context methods from the view of memory augmentation of LLMs. UniMem is characterized by four key dimensions: Memory Management, Memory Writing, Memory Reading, and Memory Injection, providing a systematic theory for understanding various long-context methods. We reformulate 16 existing methods based on UniMem and analyze four representative methods: Transformer-XL, Memorizing Transformer, RMT, and Longformer into equivalent UniMem forms to reveal their design principles and strengths. Based on these analyses, we propose UniMix, an innovative approach that integrates the strengths of these algorithms. Experimental results show that UniMix achieves superior performance in handling long contexts with significantly lower perplexity than baselines.
Abstract:Can replay, as a widely observed neural activity pattern in brain regions, particularly in the hippocampus and neocortex, emerge in an artificial agent? If yes, does it contribute to the tasks? In this work, without heavy dependence on complex assumptions, we discover naturally emergent replay under task-optimized paradigm using a recurrent neural network-based reinforcement learning model, which mimics the hippocampus and prefrontal cortex, as well as their intercommunication and the sensory cortex input. The emergent replay in the hippocampus, which results from the episodic memory and cognitive map as well as environment observations, well resembles animal experimental data and serves as an effective indicator of high task performance. The model also successfully reproduces local and nonlocal replay, which matches the human experimental data. Our work provides a new avenue for understanding the mechanisms behind replay.