Abstract:AI fairness seeks to improve the transparency and explainability of AI systems by ensuring that their outcomes genuinely reflect the best interests of users. Data augmentation, which involves generating synthetic data from existing datasets, has gained significant attention as a solution to data scarcity. In particular, diffusion models have become a powerful technique for generating synthetic data, especially in fields like computer vision. This paper explores the potential of diffusion models to generate synthetic tabular data to improve AI fairness. The Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM), a diffusion model adaptable to any tabular dataset and capable of handling various feature types, was utilized with different amounts of generated data for data augmentation. Additionally, reweighting samples from AIF360 was employed to further enhance AI fairness. Five traditional machine learning models-Decision Tree (DT), Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest (RF)-were used to validate the proposed approach. Experimental results demonstrate that the synthetic data generated by Tab-DDPM improves fairness in binary classification.
Abstract:Text-to-SQLs enables non-expert users to effortlessly retrieve desired information from relational databases using natural language queries. While recent advancements, particularly with Large Language Models (LLMs) like GPT and T5, have shown impressive performance on large-scale benchmarks such as BIRD, current state-of-the-art (SOTA) LLM-based Text-to-SQLs models often require significant efforts to develop auxiliary tools like SQL classifiers to achieve high performance. This paper proposed a novel approach that only needs SQL Quality Measurement to enhance LLMs-based Text-to-SQLs performance. It establishes a SQL quality evaluation mechanism to assess the generated SQL queries against predefined criteria and actual database responses. This feedback loop enables continuous learning and refinement of model outputs based on both syntactic correctness and semantic accuracy. The proposed method undergoes comprehensive validation on the BIRD benchmark, assessing Execution Accuracy (EX) and Valid Efficiency Score (VES) across various Text-to-SQLs difficulty levels. Experimental results reveal competitive performance in both EX and VES compared to SOTA models like GPT4 and T5.
Abstract:In contrast to pedagogies like evidence-based teaching, personalized adaptive learning (PAL) distinguishes itself by closely monitoring the progress of individual students and tailoring the learning path to their unique knowledge and requirements. A crucial technique for effective PAL implementation is knowledge tracing, which models students' evolving knowledge to predict their future performance. Based on these predictions, personalized recommendations for resources and learning paths can be made to meet individual needs. Recent advancements in deep learning have successfully enhanced knowledge tracking through Deep Knowledge Tracing (DKT). This paper introduces generative AI models to further enhance DKT. Generative AI models, rooted in deep learning, are trained to generate synthetic data, addressing data scarcity challenges in various applications across fields such as natural language processing (NLP) and computer vision (CV). This study aims to tackle data shortage issues in student learning records to enhance DKT performance for PAL. Specifically, it employs TabDDPM, a diffusion model, to generate synthetic educational records to augment training data for enhancing DKT. The proposed method's effectiveness is validated through extensive experiments on ASSISTments datasets. The experimental results demonstrate that the AI-generated data by TabDDPM significantly improves DKT performance, particularly in scenarios with small data for training and large data for testing.
Abstract:Fairness AI aims to detect and alleviate bias across the entire AI development life cycle, encompassing data curation, modeling, evaluation, and deployment-a pivotal aspect of ethical AI implementation. Addressing data bias, particularly concerning sensitive attributes like gender and race, reweighting samples proves efficient for fairness AI. This paper contributes a systematic examination of reweighting samples for traditional machine learning (ML) models, employing five models for binary classification on the Adult Income and COMPUS datasets with various protected attributes. The study evaluates prediction results using five fairness metrics, uncovering the nuanced and model-specific nature of reweighting sample effectiveness in achieving fairness in traditional ML models, as well as revealing the complexity of bias dynamics.
Abstract:The identification of key factors such as medications, diseases, and relationships within electronic health records and clinical notes has a wide range of applications in the clinical field. In the N2C2 2022 competitions, various tasks were presented to promote the identification of key factors in electronic health records (EHRs) using the Contextualized Medication Event Dataset (CMED). Pretrained large language models (LLMs) demonstrated exceptional performance in these tasks. This study aims to explore the utilization of LLMs, specifically ChatGPT, for data augmentation to overcome the limited availability of annotated data for identifying the key factors in EHRs. Additionally, different pre-trained BERT models, initially trained on extensive datasets like Wikipedia and MIMIC, were employed to develop models for identifying these key variables in EHRs through fine-tuning on augmented datasets. The experimental results of two EHR analysis tasks, namely medication identification and medication event classification, indicate that data augmentation based on ChatGPT proves beneficial in improving performance for both medication identification and medication event classification.
Abstract:Image segmentation is a very popular and important task in computer vision. In this paper, inverse quantum Fourier transform (IQFT) for image segmentation has been explored and a novel IQFT-inspired algorithm is proposed and implemented by leveraging the underlying mathematical structure of the IQFT. Specifically, the proposed method takes advantage of the phase information of the pixels in the image by encoding the pixels' intensity into qubit relative phases and applying IQFT to classify the pixels into different segments automatically and efficiently. To the best of our knowledge, this is the first attempt of using IQFT for unsupervised image segmentation. The proposed method has low computational cost comparing to the deep learning-based methods and more importantly it does not require training, thus make it suitable for real-time applications. The performance of the proposed method is compared with K-means and Otsu-thresholding. The proposed method outperforms both of them on the PASCAL VOC 2012 segmentation benchmark and the xVIEW2 challenge dataset by as much as 50% in terms of mean Intersection-Over-Union (mIOU).
Abstract:Underwater acoustic (UWA) communications have been widely used but greatly impaired due to the complicated nature of the underwater environment. In order to improve UWA communications, modeling and understanding the UWA channel is indispensable. However, there exist many challenges due to the high uncertainties of the underwater environment and the lack of real-world measurement data. In this work, the capability of reservoir computing and deep learning has been explored for modeling the UWA communication channel accurately using real underwater data collected from a water tank with disturbance and from Lake Tahoe. We leverage the capability of reservoir computing for modeling dynamical systems and provided a data-driven approach to modeling the UWA channel using Echo State Network (ESN). In addition, the potential application of transfer learning to reservoir computing has been examined. Experimental results show that ESN is able to model chaotic UWA channels with better performance compared to popular deep learning models in terms of mean absolute percentage error (MAPE), specifically, ESN has outperformed deep neural network by 2% and as much as 40% in benign and chaotic UWA respectively.
Abstract:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence (AI), deep learning has been applied to perform COVID-19 infection region segmentation and disease classification by analyzing CXR and CT data. However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated. In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty. The proposed method has been validated on a large dataset that is associated with CXR image segmentation. Experimental results demonstrate that the proposed method can improve the segmentation performance, as well as decrease prediction uncertainties.
Abstract:The fast execution speed and energy efficiency of analog hardware has made them a strong contender for deployment of deep learning model at the edge. However, there are concerns about the presence of analog noise which causes changes to the weight of the models, leading to performance degradation of deep learning model, despite their inherent noise resistant characteristics. The effect of the popular batch normalization layer on the noise resistant ability of deep learning model is investigated in this work. This systematic study has been carried out by first training different models with and without batch normalization layer on CIFAR10 and CIFAR100 dataset. The weights of the resulting models are then injected with analog noise and the performance of the models on the test dataset is obtained and compared. The results show that the presence of batch normalization layer negatively impacts noise resistant property of deep learning model and the impact grows with the increase of the number of batch normalization layers.
Abstract:The interest in analog computation has grown tremendously in recent years due to its fast computation speed and excellent energy efficiency, which is very important for edge and IoT devices in the sub-watt power envelope for deep learning inferencing. However, significant performance degradation suffered by deep learning models due to the inherent noise present in the analog computation can limit their use in mission-critical applications. Hence, there is a need to understand the impact of critical model hyperparameters choice on the resulting model noise-resistant property. This need is critical as the insight obtained can be used to design deep learning models that are robust to analog noise. In this paper, the impact of the learning rate, a critical design choice, on the noise-resistant property is investigated. The study is achieved by first training deep learning models using different learning rates. Thereafter, the models are injected with analog noise and the noise-resistant property of the resulting models is examined by measuring the performance degradation due to the analog noise. The results showed there exists a sweet spot of learning rate values that achieves a good balance between model prediction performance and model noise-resistant property. Furthermore, the theoretical justification of the observed phenomenon is provided.