Abstract:Multimodal image fusion (MMIF) aims to integrate information from different modalities to obtain a comprehensive image, aiding downstream tasks. However, existing methods tend to prioritize natural image fusion and focus on information complementary and network training strategies. They ignore the essential distinction between natural and medical image fusion and the influence of underlying components. This paper dissects the significant differences between the two tasks regarding fusion goals, statistical properties, and data distribution. Based on this, we rethink the suitability of the normalization strategy and convolutional kernels for end-to-end MMIF.Specifically, this paper proposes a mixture of instance normalization and group normalization to preserve sample independence and reinforce intrinsic feature correlation.This strategy promotes the potential of enriching feature maps, thus boosting fusion performance. To this end, we further introduce the large kernel convolution, effectively expanding receptive fields and enhancing the preservation of image detail. Moreover, the proposed multipath adaptive fusion module recalibrates the decoder input with features of various scales and receptive fields, ensuring the transmission of crucial information. Extensive experiments demonstrate that our method exhibits state-of-the-art performance in multiple fusion tasks and significantly improves downstream applications. The code is available at https://github.com/HeDan-11/LKC-FUNet.
Abstract:Score matching with Langevin dynamics (SMLD) method has been successfully applied to accelerated MRI. However, the hyperparameters in the sampling process require subtle tuning, otherwise the results can be severely corrupted by hallucination artifacts, particularly with out-of-distribution test data. In this study, we propose a novel workflow in which SMLD results are regarded as additional priors to guide model-driven network training. First, we adopted a pretrained score network to obtain samples as preliminary guidance images (PGI) without the need for network retraining, parameter tuning and in-distribution test data. Although PGIs are corrupted by hallucination artifacts, we believe that they can provide extra information through effective denoising steps to facilitate reconstruction. Therefore, we designed a denoising module (DM) in the second step to improve the quality of PGIs. The features are extracted from the components of Langevin dynamics and the same score network with fine-tuning; hence, we can directly learn the artifact patterns. Third, we designed a model-driven network whose training is guided by denoised PGIs (DGIs). DGIs are densely connected with intermediate reconstructions in each cascade to enrich the features and are periodically updated to provide more accurate guidance. Our experiments on different sequences revealed that despite the low average quality of PGIs, the proposed workflow can effectively extract valuable information to guide the network training, even with severely reduced training data and sampling steps. Our method outperforms other cutting-edge techniques by effectively mitigating hallucination artifacts, yielding robust and high-quality reconstruction results.