Abstract:Photoacoustic tomography (PAT) is a rapidly-evolving medical imaging modality that combines optical absorption contrast with ultrasound imaging depth. One challenge in PAT is image reconstruction with inadequate acoustic signals due to limited sensor coverage or due to the density of the transducer array. Such cases call for solving an ill-posed inverse reconstruction problem. In this work, we use score-based diffusion models to solve the inverse problem of reconstructing an image from limited PAT measurements. The proposed approach allows us to incorporate an expressive prior learned by a diffusion model on simulated vessel structures while still being robust to varying transducer sparsity conditions.
Abstract:Reproducible research in Machine Learning has seen a salutary abundance of progress lately: workflows, transparency, and statistical analysis of validation and test performance. We build on these efforts and take them further. We offer a principled experimental design methodology, based on linear mixed models, to study and separate the effects of multiple factors of variation in machine learning experiments. This approach allows to account for the effects of architecture, optimizer, hyper-parameters, intentional randomization, as well as unintended lack of determinism across reruns. We illustrate that methodology by analyzing Matching Networks, Prototypical Networks and TADAM on the miniImagenet dataset.
Abstract:We report the first, to the best of our knowledge, hand-in-hand collaboration between human rights activists and machine learners, leveraging crowd-sourcing to study online abuse against women on Twitter. On a technical front, we carefully curate an unbiased yet low-variance dataset of labeled tweets, analyze it to account for the variability of abuse perception, and establish baselines, preparing it for release to community research efforts. On a social impact front, this study provides the technical backbone for a media campaign aimed at raising public and deciders' awareness and elevating the standards expected from social media companies.