Abstract:Flexible endoscopes are commonly adopted in narrow and confined anatomical cavities due to their higher reachability and dexterity. However, prolonged and unintuitive manipulation of these endoscopes leads to an increased workload on surgeons and risks of collision. To address these challenges, this paper proposes a CT-guided control framework for the diagnosis of maxillary sinusitis by using a robotic flexible endoscope. In the CT-guided control framework, a feasible path to the target position in the maxillary sinus cavity for the robotic flexible endoscope is designed. Besides, an optimal control scheme is proposed to autonomously control the robotic flexible endoscope to follow the feasible path. This greatly improves the efficiency and reduces the workload for surgeons. Several experiments were conducted based on a widely utilized sinus phantom, and the results showed that the robotic flexible endoscope can accurately and autonomously follow the feasible path and reach the target position in the maxillary sinus cavity. The results also verified the feasibility of the CT-guided control framework, which contributes an effective approach to early diagnosis of sinusitis in the future.
Abstract:This paper addresses path set planning that yields important applications in robot manipulation and navigation such as path generation for deformable object keypoints and swarms. A path set refers to the collection of finite agent paths to represent the overall spatial path of a group of keypoints or a swarm, whose collective properties meet spatial and topological constraints. As opposed to planning a single path, simultaneously planning multiple paths with constraints poses nontrivial challenges in complex environments. This paper presents a systematic planning pipeline for homotopic path sets, a widely applicable path set class in robotics. An extended visibility check condition is first proposed to attain a sparse passage distribution amidst dense obstacles. Passage-aware optimal path planning compatible with sampling-based planners is then designed for single path planning with adjustable costs. Large accessible free space for path set accommodation can be achieved by the planned path while having a sufficiently short path length. After specifying the homotopic properties of path sets, path set generation based on deformable path transfer is proposed in an efficient centralized manner. The effectiveness of these methods is validated by extensive simulated and experimental results.
Abstract:Intelligent vision control systems for surgical robots should adapt to unknown and diverse objects while being robust to system disturbances. Previous methods did not meet these requirements due to mainly relying on pose estimation and feature tracking. We propose a world-model-based deep reinforcement learning framework "Grasp Anything for Surgery" (GAS), that learns a pixel-level visuomotor policy for surgical grasping, enhancing both generality and robustness. In particular, a novel method is proposed to estimate the values and uncertainties of depth pixels for a rigid-link object's inaccurate region based on the empirical prior of the object's size; both depth and mask images of task objects are encoded to a single compact 3-channel image (size: 64x64x3) by dynamically zooming in the mask regions, minimizing the information loss. The learned controller's effectiveness is extensively evaluated in simulation and in a real robot. Our learned visuomotor policy handles: i) unseen objects, including 5 types of target grasping objects and a robot gripper, in unstructured real-world surgery environments, and ii) disturbances in perception and control. Note that we are the first work to achieve a unified surgical control system that grasps diverse surgical objects using different robot grippers on real robots in complex surgery scenes (average success rate: 69%). Our system also demonstrates significant robustness across 6 conditions including background variation, target disturbance, camera pose variation, kinematic control error, image noise, and re-grasping after the gripped target object drops from the gripper. Videos and codes can be found on our project page: https://linhongbin.github.io/gas/.
Abstract:Depth position highly affects lens distortion, especially in close-range photography, which limits the measurement accuracy of existing stereo vision systems. Moreover, traditional depth-dependent distortion models and their calibration methods have remained complicated. In this work, we propose a minimal set of parameters based depth-dependent distortion model (MDM), which considers the radial and decentering distortions of the lens to improve the accuracy of stereo vision systems and simplify their calibration process. In addition, we present an easy and flexible calibration method for the MDM of stereo vision systems with a commonly used planar pattern, which requires cameras to observe the planar pattern in different orientations. The proposed technique is easy to use and flexible compared with classical calibration techniques for depth-dependent distortion models in which the lens must be perpendicular to the planar pattern. The experimental validation of the MDM and its calibration method showed that the MDM improved the calibration accuracy by 56.55% and 74.15% compared with the Li's distortion model and traditional Brown's distortion model. Besides, an iteration-based reconstruction method is proposed to iteratively estimate the depth information in the MDM during three-dimensional reconstruction. The results showed that the accuracy of the iteration-based reconstruction method was improved by 9.08% compared with that of the non-iteration reconstruction method.
Abstract:In robotic deformable object manipulation (DOM) applications, constraints arise commonly from environments and task-specific requirements. Enabling DOM with constraints is therefore crucial for its deployment in practice. However, dealing with constraints turns out to be challenging due to many inherent factors such as inaccessible deformation models of deformable objects (DOs) and varying environmental setups. This article presents a systematic manipulation framework for DOM subject to constraints by proposing a novel path set planning and tracking scheme. First, constrained DOM tasks are formulated into a versatile optimization formalism which enables dynamic constraint imposition. Because of the lack of the local optimization objective and high state dimensionality, the formulated problem is not analytically solvable. To address this, planning of the path set, which collects paths of DO feedback points, is proposed subsequently to offer feasible path and motion references for DO in constrained setups. Both theoretical analyses and computationally efficient algorithmic implementation of path set planning are discussed. Lastly, a control architecture combining path set tracking and constraint handling is designed for task execution. The effectiveness of our methods is validated in a variety of DOM tasks with constrained experimental settings.
Abstract:Robotic skill learning has been increasingly studied but the demonstration collections are more challenging compared to collecting images/videos in computer vision and texts in natural language processing. This paper presents a skill learning paradigm by using intuitive teleoperation devices to generate high-quality human demonstrations efficiently for robotic skill learning in a data-driven manner. By using a reliable teleoperation interface, the da Vinci Research Kit (dVRK) master, a system called dVRK-Simulator-for-Demonstration (dS4D) is proposed in this paper. Various manipulation tasks show the system's effectiveness and advantages in efficiency compared to other interfaces. Using the collected data for policy learning has been investigated, which verifies the initial feasibility. We believe the proposed paradigm can facilitate robot learning driven by high-quality demonstrations and efficiency while generating them.
Abstract:Needle picking is a challenging surgical task in robot-assisted surgery due to the characteristics of small slender shapes of needles, needles' variations in shapes and sizes, and demands for millimeter-level control. Prior works, heavily relying on the prior of needles (e.g., geometric models), are hard to scale to unseen needles' variations. In addition, visual tracking errors can not be minimized online using their approaches. In this paper, we propose an end-to-end deep visual learning framework for needle-picking tasks where both visual and control components can be learned jointly online. Our proposed framework integrates a state-of-the-art reinforcement learning framework, Dreamer, with behavior cloning (BC). Besides, two novel techniques, i.e., Virtual Clutch and Dynamic Spotlight Adaptation (DSA), are introduced to our end-to-end visual controller for needle-picking tasks. We conducted extensive experiments in simulation to evaluate the performance, robustness, variation adaptation, and effectiveness of individual components of our method. Our approach, trained by 8k demonstration timesteps and 140k online policy timesteps, can achieve a remarkable success rate of 80%, a new state-of-the-art with end-to-end vision-based surgical robot learning for delicate operations tasks. Furthermore, our method effectively demonstrated its superiority in generalization to unseen dynamic scenarios with needle variations and image disturbance, highlighting its robustness and versatility. Codes and videos are available at https://sites.google.com/view/dreamerbc.
Abstract:Autonomous surgery has attracted increasing attention for revolutionizing robotic patient care, yet remains a distant and challenging goal. In this paper, we propose an image-based framework for high-precision autonomous suturing operation. We first build an algebraic geometric algorithm to achieve accurate needle pose estimation, then design the corresponding keypoint-based calibration network for joint-offset compensation, and further plan and control suture trajectory. Our solution ranked first among all competitors in the AccelNet Surgical Robotics Challenge. The source code is opened here to accelerate future autonomous surgery research.