Abstract:The first successful detection of gravitational waves by ground-based observatories, such as the Laser Interferometer Gravitational-Wave Observatory (LIGO), marked a revolutionary breakthrough in our comprehension of the Universe. However, due to the unprecedented sensitivity required to make such observations, gravitational-wave detectors also capture disruptive noise sources called glitches, potentially masking or appearing as gravitational-wave signals themselves. To address this problem, a community-science project, Gravity Spy, incorporates human insight and machine learning to classify glitches in LIGO data. The machine learning classifier, integrated into the project since 2017, has evolved over time to accommodate increasing numbers of glitch classes. Despite its success, limitations have arisen in the ongoing LIGO fourth observing run (O4) due to its architecture's simplicity, which led to poor generalization and inability to handle multi-time window inputs effectively. We propose an advanced classifier for O4 glitches. Our contributions include evaluating fusion strategies for multi-time window inputs, using label smoothing to counter noisy labels, and enhancing interpretability through attention module-generated weights. This development seeks to enhance glitch classification, aiding in the ongoing exploration of gravitational-wave phenomena.
Abstract:Short videos on social media are a prime way many young people find and consume content. News outlets would like to reach audiences through news reels, but currently struggle to translate traditional journalistic formats into the short, entertaining videos that match the style of the platform. There are many ways to frame a reel-style narrative around a news story, and selecting one is a challenge. Different news stories call for different framings, and require a different trade-off between entertainment and information. We present a system called ReelFramer that uses text and image generation to help journalists explore multiple narrative framings for a story, then generate scripts, character boards and storyboards they can edit and iterate on. A user study of five graduate students in journalism-related fields found the system greatly eased the burden of transforming a written story into a reel, and that exploring framings to find the right one was a rewarding process.
Abstract:Machine learning, artificial intelligence, and deep learning have advanced significantly over the past decade. Nonetheless, humans possess unique abilities such as creativity, intuition, context and abstraction, analytic problem solving, and detecting unusual events. To successfully tackle pressing scientific and societal challenges, we need the complementary capabilities of both humans and machines. The Federal Government could accelerate its priorities on multiple fronts through judicious integration of citizen science and crowdsourcing with artificial intelligence (AI), Internet of Things (IoT), and cloud strategies.