Abstract:Large Language Models have become an integral part of new intelligent and interactive writing assistants. Many are offered commercially with a chatbot-like UI, such as ChatGPT, and provide little information about their inner workings. This makes this new type of widespread system a potential target for deceptive design patterns. For example, such assistants might exploit hidden costs by providing guidance up until a certain point before asking for a fee to see the rest. As another example, they might sneak unwanted content/edits into longer generated or revised text pieces (e.g. to influence the expressed opinion). With these and other examples, we conceptually transfer several deceptive patterns from the literature to the new context of AI writing assistants. Our goal is to raise awareness and encourage future research into how the UI and interaction design of such systems can impact people and their writing.
Abstract:Compelling writing is tailored to its audience. This is challenging, as writers may struggle to empathize with readers, get feedback in time, or gain access to the target group. We propose a concept that generates on-demand feedback, based on writer-defined AI personas of any target audience. We explore this concept with a prototype (using GPT-3.5) in two user studies (N=5 and N=11): Writers appreciated the concept and strategically used personas for getting different perspectives. The feedback was seen as helpful and inspired revisions of text and personas, although it was often verbose and unspecific. We discuss the impact of on-demand feedback, the limited representativity of contemporary AI systems, and further ideas for defining AI personas. This work contributes to the vision of supporting writers with AI by expanding the socio-technical perspective in AI tool design: To empower creators, we also need to keep in mind their relationship to an audience.
Abstract:We propose a text editor to help users plan, structure and reflect on their writing process. It provides continuously updated paragraph-wise summaries as margin annotations, using automatic text summarization. Summary levels range from full text, to selected (central) sentences, down to a collection of keywords. To understand how users interact with this system during writing, we conducted two user studies (N=4 and N=8) in which people wrote analytic essays about a given topic and article. As a key finding, the summaries gave users an external perspective on their writing and helped them to revise the content and scope of their drafted paragraphs. People further used the tool to quickly gain an overview of the text and developed strategies to integrate insights from the automated summaries. More broadly, this work explores and highlights the value of designing AI tools for writers, with Natural Language Processing (NLP) capabilities that go beyond direct text generation and correction.