Abstract:Large Language Models have become an integral part of new intelligent and interactive writing assistants. Many are offered commercially with a chatbot-like UI, such as ChatGPT, and provide little information about their inner workings. This makes this new type of widespread system a potential target for deceptive design patterns. For example, such assistants might exploit hidden costs by providing guidance up until a certain point before asking for a fee to see the rest. As another example, they might sneak unwanted content/edits into longer generated or revised text pieces (e.g. to influence the expressed opinion). With these and other examples, we conceptually transfer several deceptive patterns from the literature to the new context of AI writing assistants. Our goal is to raise awareness and encourage future research into how the UI and interaction design of such systems can impact people and their writing.
Abstract:Compelling writing is tailored to its audience. This is challenging, as writers may struggle to empathize with readers, get feedback in time, or gain access to the target group. We propose a concept that generates on-demand feedback, based on writer-defined AI personas of any target audience. We explore this concept with a prototype (using GPT-3.5) in two user studies (N=5 and N=11): Writers appreciated the concept and strategically used personas for getting different perspectives. The feedback was seen as helpful and inspired revisions of text and personas, although it was often verbose and unspecific. We discuss the impact of on-demand feedback, the limited representativity of contemporary AI systems, and further ideas for defining AI personas. This work contributes to the vision of supporting writers with AI by expanding the socio-technical perspective in AI tool design: To empower creators, we also need to keep in mind their relationship to an audience.