Abstract:Large language models (LLMs) have demonstrated limitations in handling combinatorial optimization problems involving long-range reasoning, partially due to causal hallucinations and huge search space. As for causal hallucinations, i.e., the inconsistency between reasoning and corresponding state transition, this paper introduces the Causal Relationship Enhancement (CRE) mechanism combining cause-effect interventions and the Individual Treatment Effect (ITE) to guarantee the solid causal rightness between each step of reasoning and state transition. As for the long causal range and huge search space limiting the performances of existing models featuring single-direction search, a Dual-End Searching (DES) approach is proposed to seek solutions by simultaneously starting from both the initial and goal states on the causal probability tree. By integrating CRE and DES (CreDes), our model has realized simultaneous multi-step reasoning, circumventing the inefficiencies from cascading multiple one-step reasoning like the Chain-of-Thought (CoT). Experiments demonstrate that CreDes significantly outperforms existing State-Of-The-Art (SOTA) solutions in long-range reasoning tasks in terms of both accuracy and time efficiency.
Abstract:Micro-expressions are involuntary facial movements that cannot be consciously controlled, conveying subtle cues with substantial real-world applications. The analysis of micro-expressions generally involves two main tasks: spotting micro-expression intervals in long videos and recognizing the emotions associated with these intervals. Previous deep learning methods have primarily relied on classification networks utilizing sliding windows. However, fixed window sizes and window-level hard classification introduce numerous constraints. Additionally, these methods have not fully exploited the potential of complementary pathways for spotting and recognition. In this paper, we present a novel temporal state transition architecture grounded in the state space model, which replaces conventional window-level classification with video-level regression. Furthermore, by leveraging the inherent connections between spotting and recognition tasks, we propose a synergistic strategy that enhances overall analysis performance. Extensive experiments demonstrate that our method achieves state-of-the-art performance. The codes and pre-trained models are available at https://github.com/zizheng-guo/ME-TST.