Abstract:Recently, learning-based algorithms have shown impressive performance in underwater image enhancement. Most of them resort to training on synthetic data and achieve outstanding performance. However, these methods ignore the significant domain gap between the synthetic and real data (i.e., interdomain gap), and thus the models trained on synthetic data often fail to generalize well to real underwater scenarios. Furthermore, the complex and changeable underwater environment also causes a great distribution gap among the real data itself (i.e., intra-domain gap). However, almost no research focuses on this problem and thus their techniques often produce visually unpleasing artifacts and color distortions on various real images. Motivated by these observations, we propose a novel Two-phase Underwater Domain Adaptation network (TUDA) to simultaneously minimize the inter-domain and intra-domain gap. Concretely, a new dual-alignment network is designed in the first phase, including a translation part for enhancing realism of input images, followed by an enhancement part. With performing image-level and feature-level adaptation in two parts by jointly adversarial learning, the network can better build invariance across domains and thus bridge the inter-domain gap. In the second phase, we perform an easy-hard classification of real data according to the assessed quality of enhanced images, where a rank-based underwater quality assessment method is embedded. By leveraging implicit quality information learned from rankings, this method can more accurately assess the perceptual quality of enhanced images. Using pseudo labels from the easy part, an easy-hard adaptation technique is then conducted to effectively decrease the intra-domain gap between easy and hard samples.
Abstract:Most deep models for underwater image enhancement resort to training on synthetic datasets based on underwater image formation models. Although promising performances have been achieved, they are still limited by two problems: (1) existing underwater image synthesis models have an intrinsic limitation, in which the homogeneous ambient light is usually randomly generated and many important dependencies are ignored, and thus the synthesized training data cannot adequately express characteristics of real underwater environments; (2) most of deep models disregard lots of favorable underwater priors and heavily rely on training data, which extensively limits their application ranges. To address these limitations, a new underwater synthetic dataset is first established, in which a revised ambient light synthesis equation is embedded. The revised equation explicitly defines the complex mathematical relationship among intensity values of the ambient light in RGB channels and many dependencies such as surface-object depth, water types, etc, which helps to better simulate real underwater scene appearances. Secondly, a unified framework is proposed, named ANA-SYN, which can effectively enhance underwater images under collaborations of priors (underwater domain knowledge) and data information (underwater distortion distribution). The proposed framework includes an analysis network and a synthesis network, one for priors exploration and another for priors integration. To exploit more accurate priors, the significance of each prior for the input image is explored in the analysis network and an adaptive weighting module is designed to dynamically recalibrate them. Meanwhile, a novel prior guidance module is introduced in the synthesis network, which effectively aggregates the prior and data features and thus provides better hybrid information to perform the more reasonable image enhancement.