Abstract:Semantic communication technology is regarded as a method surpassing the Shannon limit of bit transmission, capable of effectively enhancing transmission efficiency. However, current approaches that directly map content to transmission symbols are challenging to deploy in practice, imposing significant limitations on the development of semantic communication. To address this challenge, we propose a hybrid bit and semantic communication system, named HybridBSC, in which encoded semantic information is inserted into bit information for transmission via conventional digital communication systems utilizing same spectrum resources. The system can be easily deployed using existing communication architecture to achieve bit and semantic information transmission. Particularly, we design a semantic insertion and extraction scheme to implement this strategy. Furthermore, we conduct experimental validation based on the pluto-based software defined radio (SDR) platform in a real wireless channel, demonstrating that the proposed strategy can simultaneously transmit semantic and bit information.
Abstract:As a competitive technology for 6G, semantic communications can significantly improve transmission efficiency. However, many existing semantic communication systems require information feedback during the training coding process, resulting in a significant communication overhead. In this article, we consider a two-way semantic communication (TW-SC) system, where information feedback can be omitted by exploiting the weight reciprocity in the transceiver. Particularly, the channel simulator and semantic transceiver are implemented on both TW-SC nodes and the channel distribution is modeled by a conditional generative adversarial network. Simulation results demonstrate that the proposed TW-SC system performs closing to the state-of-the-art one-way semantic communication systems but requiring no feedback between the transceiver in the training process.
Abstract:Intelligent wireless networks have long been expected to have self-configuration and self-optimization capabilities to adapt to various environments and demands. In this paper, we develop a novel distributed hierarchical deep reinforcement learning (DHDRL) framework with two-tier control networks in different timescales to optimize the long-term spectrum efficiency (SE) of the downlink cell-free multiple-input single-output (MISO) network, consisting of multiple distributed access points (AP) and user terminals (UT). To realize the proposed two-tier control strategy, we decompose the optimization problem into two sub-problems, AP-UT association (AUA) as well as beamforming and power allocation (BPA), resulting in a Markov decision process (MDP) and Partially Observable MDP (POMDP). The proposed method consists of two neural networks. At the system level, a distributed high-level neural network is introduced to optimize wireless network structure on a large timescale. While at the link level, a distributed low-level neural network is proposed to mitigate inter-AP interference and improve the transmission performance on a small timescale. Numerical results show that our method is effective for high-dimensional problems, in terms of spectrum efficiency, signaling overhead as well as satisfaction probability, and generalize well to diverse multi-object problems.
Abstract:Along with the development of virtual reality (VR), omnidirectional images play an important role in producing multimedia content with immersive experience. However, despite various existing approaches for omnidirectional image stitching, how to quantitatively assess the quality of stitched images is still insufficiently explored. To address this problem, we establish a novel omnidirectional image dataset containing stitched images as well as dual-fisheye images captured from standard quarters of 0$^\circ$, 90$^\circ$, 180$^\circ$ and 270$^\circ$. In this manner, when evaluating the quality of an image stitched from a pair of fisheye images (e.g., 0$^\circ$ and 180$^\circ$), the other pair of fisheye images (e.g., 90$^\circ$ and 270$^\circ$) can be used as the cross-reference to provide ground-truth observations of the stitching regions. Based on this dataset, we further benchmark six widely used stitching models with seven evaluation metrics for IQA. To the best of our knowledge, it is the first dataset that focuses on assessing the stitching quality of omnidirectional images.