Abstract:We introduce the Overall Performance Index (OPI), an intrinsic metric to evaluate retrieval-augmented generation (RAG) mechanisms for applications involving deep-logic queries. OPI is computed as the harmonic mean of two key metrics: the Logical-Relation Correctness Ratio and the average of BERT embedding similarity scores between ground-truth and generated answers. We apply OPI to assess the performance of LangChain, a popular RAG tool, using a logical relations classifier fine-tuned from GPT-4o on the RAG-Dataset-12000 from Hugging Face. Our findings show a strong correlation between BERT embedding similarity scores and extrinsic evaluation scores. Among the commonly used retrievers, the cosine similarity retriever using BERT-based embeddings outperforms others, while the Euclidean distance-based retriever exhibits the weakest performance. Furthermore, we demonstrate that combining multiple retrievers, either algorithmically or by merging retrieved sentences, yields superior performance compared to using any single retriever alone.
Abstract:Recently, the weight-sharing technique has significantly speeded up the training and evaluation procedure of neural architecture search. However, most existing weight-sharing strategies are solely based on experience or observation, which makes the searching results lack interpretability and rationality. In addition, due to the negligence of fairness, current methods are prone to make misjudgments in module evaluation. To address these problems, we propose a novel neural architecture search algorithm based on dynamical isometry. We use the fix point analysis method in the mean field theory to analyze the dynamics behavior in the steady state random neural network, and how dynamic isometry guarantees the fairness of weight-sharing based NAS. Meanwhile, we prove that our module selection strategy is rigorous fair by estimating the generalization error of all modules with well-conditioned Jacobian. Extensive experiments show that, with the same size, the architecture searched by the proposed method can achieve state-of-the-art top-1 validation accuracy on ImageNet classification. In addition, we demonstrate that our method is able to achieve better and more stable training performance without loss of generality.