Abstract:While previous studies of AI in diabetes management focus on long-term risk, research on near-future glucose prediction remains limited but important as it enables timely diabetes self-management. Integrating AI with continuous glucose monitoring (CGM) holds promise for near-future glucose prediction. However, existing models have limitations in capturing patterns of blood glucose fluctuations and demonstrate poor generalizability. A robust approach is needed to leverage massive CGM data for near-future glucose prediction. We propose large sensor models (LSMs) to capture knowledge in CGM data by modeling patients as sequences of glucose. CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction. We evaluated CGM-LSM against state-of-the-art methods using the OhioT1DM dataset across various metrics, prediction horizons, and unseen patients. Additionally, we assessed its generalizability across factors like diabetes type, age, gender, and hour of day. CGM-LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon. For the OhioT1DM dataset, CGM-LSM achieved a one-hour rMSE of 15.64 mg/dL, halving the previous best of 31.97 mg/dL. Robustness analyses revealed consistent performance not only for unseen patients and future periods, but also across diabetes type, age, and gender. The model demonstrated adaptability to different hours of day, maintaining accuracy across periods of various activity intensity levels. CGM-LSM represents a transformative step in diabetes management by leveraging pretraining to uncover latent glucose generation patterns in sensor data. Our findings also underscore the broader potential of LSMs to drive innovation across domains involving complex sensor data.
Abstract:We propose depth from coupled optical differentiation, a low-computation passive-lighting 3D sensing mechanism. It is based on our discovery that per-pixel object distance can be rigorously determined by a coupled pair of optical derivatives of a defocused image using a simple, closed-form relationship. Unlike previous depth-from-defocus (DfD) methods that leverage spatial derivatives of the image to estimate scene depths, the proposed mechanism's use of only optical derivatives makes it significantly more robust to noise. Furthermore, unlike many previous DfD algorithms with requirements on aperture code, this relationship is proved to be universal to a broad range of aperture codes. We build the first 3D sensor based on depth from coupled optical differentiation. Its optical assembly includes a deformable lens and a motorized iris, which enables dynamic adjustments to the optical power and aperture radius. The sensor captures two pairs of images: one pair with a differential change of optical power and the other with a differential change of aperture scale. From the four images, a depth and confidence map can be generated with only 36 floating point operations per output pixel (FLOPOP), more than ten times lower than the previous lowest passive-lighting depth sensing solution to our knowledge. Additionally, the depth map generated by the proposed sensor demonstrates more than twice the working range of previous DfD methods while using significantly lower computation.
Abstract:The astonishing development of single-photon cameras has created an unprecedented opportunity for scientific and industrial imaging. However, the high data throughput generated by these 1-bit sensors creates a significant bottleneck for low-power applications. In this paper, we explore the possibility of generating a color image from a single binary frame of a single-photon camera. We evidently find this problem being particularly difficult to standard colorization approaches due to the substantial degree of exposure variation. The core innovation of our paper is an exposure synthesis model framed under a neural ordinary differential equation (Neural ODE) that allows us to generate a continuum of exposures from a single observation. This innovation ensures consistent exposure in binary images that colorizers take on, resulting in notably enhanced colorization. We demonstrate applications of the method in single-image and burst colorization and show superior generative performance over baselines. Project website can be found at https://vishal-s-p.github.io/projects/2023/generative_quanta_color.html.
Abstract:We present CT-Bound, a fast boundary estimation method for noisy images using a hybrid Convolution and Transformer neural network. The proposed architecture decomposes boundary estimation into two tasks: local detection and global regularization of image boundaries. It first estimates a parametric representation of boundary structures only using the input image within a small receptive field and then refines the boundary structure in the parameter domain without accessing the input image. Because of this, a part of the network can be easily trained using naive, synthetic images and still generalized to real images, and the entire architecture is computationally efficient as the boundary refinement is non-iterative and not in the image domain. Compared with the previous highest accuracy methods, our experiment shows that CT-Bound is 100 times faster, producing comparably accurate, high-quality boundary and color maps. We also demonstrate that CT-Bound can produce boundary and color maps on real captured images without extra fine-tuning and real-time boundary map and color map videos at ten frames per second.