Abstract:Posterior sampling in high-dimensional spaces using generative models holds significant promise for various applications, including but not limited to inverse problems and guided generation tasks. Despite many recent developments, generating diverse posterior samples remains a challenge, as existing methods require restarting the entire generative process for each new sample, making the procedure computationally expensive. In this work, we propose efficient posterior sampling by simulating Langevin dynamics in the noise space of a pre-trained generative model. By exploiting the mapping between the noise and data spaces which can be provided by distilled flows or consistency models, our method enables seamless exploration of the posterior without the need to re-run the full sampling chain, drastically reducing computational overhead. Theoretically, we prove a guarantee for the proposed noise-space Langevin dynamics to approximate the posterior, assuming that the generative model sufficiently approximates the prior distribution. Our framework is experimentally validated on image restoration tasks involving noisy linear and nonlinear forward operators applied to LSUN-Bedroom (256 x 256) and ImageNet (64 x 64) datasets. The results demonstrate that our approach generates high-fidelity samples with enhanced semantic diversity even under a limited number of function evaluations, offering superior efficiency and performance compared to existing diffusion-based posterior sampling techniques.
Abstract:This paper undertakes the task of replicating the MaskFormer model a universal image segmentation model originally developed using the PyTorch framework, within the TensorFlow ecosystem, specifically optimized for execution on Tensor Processing Units (TPUs). Our implementation exploits the modular constructs available within the TensorFlow Model Garden (TFMG), encompassing elements such as the data loader, training orchestrator, and various architectural components, tailored and adapted to meet the specifications of the MaskFormer model. We address key challenges encountered during the replication, non-convergence issues, slow training, adaptation of loss functions, and the integration of TPU-specific functionalities. We verify our reproduced implementation and present qualitative results on the COCO dataset. Although our implementation meets some of the objectives for end-to-end reproducibility, we encountered challenges in replicating the PyTorch version of MaskFormer in TensorFlow. This replication process is not straightforward and requires substantial engineering efforts. Specifically, it necessitates the customization of various components within the TFMG, alongside thorough verification and hyper-parameter tuning. The replication is available at: https://github.com/PurdueDualityLab/tf-maskformer/tree/main/official/projects/maskformer
Abstract:The astonishing development of single-photon cameras has created an unprecedented opportunity for scientific and industrial imaging. However, the high data throughput generated by these 1-bit sensors creates a significant bottleneck for low-power applications. In this paper, we explore the possibility of generating a color image from a single binary frame of a single-photon camera. We evidently find this problem being particularly difficult to standard colorization approaches due to the substantial degree of exposure variation. The core innovation of our paper is an exposure synthesis model framed under a neural ordinary differential equation (Neural ODE) that allows us to generate a continuum of exposures from a single observation. This innovation ensures consistent exposure in binary images that colorizers take on, resulting in notably enhanced colorization. We demonstrate applications of the method in single-image and burst colorization and show superior generative performance over baselines. Project website can be found at https://vishal-s-p.github.io/projects/2023/generative_quanta_color.html.
Abstract:Counterfactual outcome prediction in longitudinal data has recently gained attention due to its potential applications in healthcare and social sciences. In this paper, we explore the use of the state space model, a popular sequence model, for this task. Specifically, we compare the performance of two models: Treatment Effect Neural Controlled Differential Equation (TE-CDE) and structured state space model (S4Model). While TE-CDE uses controlled differential equations to address time-dependent confounding, it suffers from optimization issues and slow training. In contrast, S4Model is more efficient at modeling long-range dependencies and easier to train. We evaluate the models on a simulated lung tumor growth dataset and find that S4Model outperforms TE-CDE with 1.63x reduction in per epoch training time and 10x better normalized mean squared error. Additionally, S4Model is more stable during training and less sensitive to weight initialization than TE-CDE. Our results suggest that the state space model may be a promising approach for counterfactual outcome prediction in longitudinal data, with S4Model offering a more efficient and effective alternative to TE-CDE.
Abstract:Neural Ordinary Differential Equations (NODEs) probed the usage of numerical solvers to solve the differential equation characterized by a Neural Network (NN), therefore initiating a new paradigm of deep learning models with infinite depth. NODEs were designed to tackle the irregular time series problem. However, NODEs have demonstrated robustness against various noises and adversarial attacks. This paper is about the natural robustness of NODEs and examines the cause behind such surprising behaviour. We show that by controlling the Lipschitz constant of the ODE dynamics the robustness can be significantly improved. We derive our approach from Grownwall's inequality. Further, we draw parallels between contractivity theory and Grownwall's inequality. Experimentally we corroborate the enhanced robustness on numerous datasets - MNIST, CIFAR-10, and CIFAR 100. We also present the impact of adaptive and non-adaptive solvers on the robustness of NODEs.