Abstract:Recently, deep learning methods have achieved superior performance for Polarimetric Synthetic Aperture Radar(PolSAR) image classification. Existing deep learning methods learn PolSAR data by converting the covariance matrix into a feature vector or complex-valued vector as the input. However, all these methods cannot learn the structure of complex matrix directly and destroy the channel correlation. To learn geometric structure of complex matrix, we propose a Riemannian complex matrix convolution network for PolSAR image classification in Riemannian space for the first time, which directly utilizes the complex matrix as the network input and defines the Riemannian operations to learn complex matrix's features. The proposed Riemannian complex matrix convolution network considers PolSAR complex matrix endowed in Riemannian manifold, and defines a series of new Riemannian convolution, ReLu and LogEig operations in Riemannian space, which breaks through the Euclidean constraint of conventional networks. Then, a CNN module is appended to enhance contextual Riemannian features. Besides, a fast kernel learning method is developed for the proposed method to learn class-specific features and reduce the computation time effectively. Experiments are conducted on three sets of real PolSAR data with different bands and sensors. Experiments results demonstrates the proposed method can obtain superior performance than the state-of-the-art methods.
Abstract:As a representation learning method, nearest regularized subspace(NRS) algorithm is an effective tool to obtain both accuracy and speed for PolSAR image classification. However, existing NRS methods use the polarimetric feature vector but the PolSAR original covariance matrix(known as Hermitian positive definite(HPD)matrix) as the input. Without considering the matrix structure, existing NRS-based methods cannot learn correlation among channels. How to utilize the original covariance matrix to NRS method is a key problem. To address this limit, a Riemannian NRS method is proposed, which consider the HPD matrices endow in the Riemannian space. Firstly, to utilize the PolSAR original data, a Riemannian NRS method(RNRS) is proposed by constructing HPD dictionary and HPD distance metric. Secondly, a new Tikhonov regularization term is designed to reduce the differences within the same class. Finally, the optimal method is developed and the first-order derivation is inferred. During the experimental test, only T matrix is used in the proposed method, while multiple of features are utilized for compared methods. Experimental results demonstrate the proposed method can outperform the state-of-art algorithms even using less features.
Abstract:For polarimetric SAR (PolSAR) image classification, it is a challenge to classify the aggregated terrain types, such as the urban area, into semantic homogenous regions due to sharp bright-dark variations in intensity. The aggregated terrain type is formulated by the similar ground objects aggregated together. In this paper, a polarimetric hierarchical semantic model (PHSM) is firstly proposed to overcome this disadvantage based on the constructions of a primal-level and a middle-level semantic. The primal-level semantic is a polarimetric sketch map which consists of sketch segments as the sparse representation of a PolSAR image. The middle-level semantic is a region map which can extract semantic homogenous regions from the sketch map by exploiting the topological structure of sketch segments. Mapping the region map to the PolSAR image, a complex PolSAR scene is partitioned into aggregated, structural and homogenous pixel-level subspaces with the characteristics of relatively coherent terrain types in each subspace. Then, according to the characteristics of three subspaces above, three specific methods are adopted, and furthermore polarimetric information is exploited to improve the segmentation result. Experimental results on PolSAR data sets with different bands and sensors demonstrate that the proposed method is superior to the state-of-the-art methods in region homogeneity and edge preservation for terrain classification.