Abstract:Recent semi-supervised object detection (SSOD) has achieved remarkable progress by leveraging unlabeled data for training. Mainstream SSOD methods rely on Consistency Regularization methods and Exponential Moving Average (EMA), which form a cyclic data flow. However, the EMA updating training approach leads to weight coupling between the teacher and student models. This coupling in a cyclic data flow results in a decrease in the utilization of unlabeled data information and the confirmation bias on low-quality or erroneous pseudo-labels. To address these issues, we propose the Collaboration of Teachers Framework (CTF), which consists of multiple pairs of teacher and student models for training. In the learning process of CTF, the Data Performance Consistency Optimization module (DPCO) informs the best pair of teacher models possessing the optimal pseudo-labels during the past training process, and these most reliable pseudo-labels generated by the best performing teacher would guide the other student models. As a consequence, this framework greatly improves the utilization of unlabeled data and prevents the positive feedback cycle of unreliable pseudo-labels. The CTF achieves outstanding results on numerous SSOD datasets, including a 0.71% mAP improvement on the 10% annotated COCO dataset and a 0.89% mAP improvement on the VOC dataset compared to LabelMatch and converges significantly faster. Moreover, the CTF is plug-and-play and can be integrated with other mainstream SSOD methods.
Abstract:In image restoration (IR), leveraging semantic priors from segmentation models has been a common approach to improve performance. The recent segment anything model (SAM) has emerged as a powerful tool for extracting advanced semantic priors to enhance IR tasks. However, the computational cost of SAM is prohibitive for IR, compared to existing smaller IR models. The incorporation of SAM for extracting semantic priors considerably hampers the model inference efficiency. To address this issue, we propose a general framework to distill SAM's semantic knowledge to boost exiting IR models without interfering with their inference process. Specifically, our proposed framework consists of the semantic priors fusion (SPF) scheme and the semantic priors distillation (SPD) scheme. SPF fuses two kinds of information between the restored image predicted by the original IR model and the semantic mask predicted by SAM for the refined restored image. SPD leverages a self-distillation manner to distill the fused semantic priors to boost the performance of original IR models. Additionally, we design a semantic-guided relation (SGR) module for SPD, which ensures semantic feature representation space consistency to fully distill the priors. We demonstrate the effectiveness of our framework across multiple IR models and tasks, including deraining, deblurring, and denoising.