Computer Vision Group, Friedrich Schiller University of Jena, Michael Stifel Center, Jena
Abstract:Implicit Neural Representation (INR) has emerged as a powerful tool for encoding discrete signals into continuous, differentiable functions using neural networks. However, these models often have an unfortunate reliance on monolithic architectures to represent high-dimensional data, leading to prohibitive computational costs as dimensionality grows. We propose F-INR, a framework that reformulates INR learning through functional tensor decomposition, breaking down high-dimensional tasks into lightweight, axis-specific sub-networks. Each sub-network learns a low-dimensional data component (e.g., spatial or temporal). Then, we combine these components via tensor operations, reducing forward pass complexity while improving accuracy through specialized learning. F-INR is modular and, therefore, architecture-agnostic, compatible with MLPs, SIREN, WIRE, or other state-of-the-art INR architecture. It is also decomposition-agnostic, supporting CP, TT, and Tucker modes with user-defined rank for speed-accuracy control. In our experiments, F-INR trains $100\times$ faster than existing approaches on video tasks while achieving higher fidelity (+3.4 dB PSNR). Similar gains hold for image compression, physics simulations, and 3D geometry reconstruction. Through this, F-INR offers a new scalable, flexible solution for high-dimensional signal modeling.
Abstract:Machine learning classification models trained with empirical risk minimization (ERM) often inadvertently rely on spurious correlations. When absent in the test data, these unintended associations between non-target attributes and target labels lead to poor generalization. This paper addresses this problem from a model optimization perspective and proposes a novel method, Gradient Extrapolation for Debiased Representation Learning (GERNE), designed to learn debiased representations in both known and unknown attribute training cases. GERNE uses two distinct batches with different amounts of spurious correlations to define the target gradient as the linear extrapolation of two gradients computed from each batch's loss. It is demonstrated that the extrapolated gradient, if directed toward the gradient of the batch with fewer amount of spurious correlation, can guide the training process toward learning a debiased model. GERNE can serve as a general framework for debiasing with methods, such as ERM, reweighting, and resampling, being shown as special cases. The theoretical upper and lower bounds of the extrapolation factor are derived to ensure convergence. By adjusting this factor, GERNE can be adapted to maximize the Group-Balanced Accuracy (GBA) or the Worst-Group Accuracy. The proposed approach is validated on five vision and one NLP benchmarks, demonstrating competitive and often superior performance compared to state-of-the-art baseline methods.
Abstract:The relationship between muscle activity and resulting facial expressions is crucial for various fields, including psychology, medicine, and entertainment. The synchronous recording of facial mimicry and muscular activity via surface electromyography (sEMG) provides a unique window into these complex dynamics. Unfortunately, existing methods for facial analysis cannot handle electrode occlusion, rendering them ineffective. Even with occlusion-free reference images of the same person, variations in expression intensity and execution are unmatchable. Our electromyography-informed facial expression reconstruction (EIFER) approach is a novel method to restore faces under sEMG occlusion faithfully in an adversarial manner. We decouple facial geometry and visual appearance (e.g., skin texture, lighting, electrodes) by combining a 3D Morphable Model (3DMM) with neural unpaired image-to-image translation via reference recordings. Then, EIFER learns a bidirectional mapping between 3DMM expression parameters and muscle activity, establishing correspondence between the two domains. We validate the effectiveness of our approach through experiments on a dataset of synchronized sEMG recordings and facial mimicry, demonstrating faithful geometry and appearance reconstruction. Further, we synthesize expressions based on muscle activity and how observed expressions can predict dynamic muscle activity. Consequently, EIFER introduces a new paradigm for facial electromyography, which could be extended to other forms of multi-modal face recordings.
Abstract:Deep learning models achieve high predictive performance but lack intrinsic interpretability, hindering our understanding of the learned prediction behavior. Existing local explainability methods focus on associations, neglecting the causal drivers of model predictions. Other approaches adopt a causal perspective but primarily provide more general global explanations. However, for specific inputs, it's unclear whether globally identified factors apply locally. To address this limitation, we introduce a novel framework for local interventional explanations by leveraging recent advances in image-to-image editing models. Our approach performs gradual interventions on semantic properties to quantify the corresponding impact on a model's predictions using a novel score, the expected property gradient magnitude. We demonstrate the effectiveness of our approach through an extensive empirical evaluation on a wide range of architectures and tasks. First, we validate it in a synthetic scenario and demonstrate its ability to locally identify biases. Afterward, we apply our approach to analyze network training dynamics, investigate medical skin lesion classifiers, and study a pre-trained CLIP model with real-life interventional data. Our results highlight the potential of interventional explanations on the property level to reveal new insights into the behavior of deep models.
Abstract:Detecting and classifying abnormal system states is critical for condition monitoring, but supervised methods often fall short due to the rarity of anomalies and the lack of labeled data. Therefore, clustering is often used to group similar abnormal behavior. However, evaluating cluster quality without ground truth is challenging, as existing measures such as the Silhouette Score (SSC) only evaluate the cohesion and separation of clusters and ignore possible prior knowledge about the data. To address this challenge, we introduce the Synchronized Anomaly Agreement Index (SAAI), which exploits the synchronicity of anomalies across multivariate time series to assess cluster quality. We demonstrate the effectiveness of SAAI by showing that maximizing SAAI improves accuracy on the task of finding the true number of anomaly classes K in correlated time series by 0.23 compared to SSC and by 0.32 compared to X-Means. We also show that clusters obtained by maximizing SAAI are easier to interpret compared to SSC.
Abstract:With the advancement of face reconstruction (FR) systems, privacy-preserving face recognition (PPFR) has gained popularity for its secure face recognition, enhanced facial privacy protection, and robustness to various attacks. Besides, specific models and algorithms are proposed for face embedding protection by mapping embeddings to a secure space. However, there is a lack of studies on investigating and evaluating the possibility of extracting face images from embeddings of those systems, especially for PPFR. In this work, we introduce the first approach to exploit Kolmogorov-Arnold Network (KAN) for conducting embedding-to-face attacks against state-of-the-art (SOTA) FR and PPFR systems. Face embedding mapping (FEM) models are proposed to learn the distribution mapping relation between the embeddings from the initial domain and target domain. In comparison with Multi-Layer Perceptrons (MLP), we provide two variants, FEM-KAN and FEM-MLP, for efficient non-linear embedding-to-embedding mapping in order to reconstruct realistic face images from the corresponding face embedding. To verify our methods, we conduct extensive experiments with various PPFR and FR models. We also measure reconstructed face images with different metrics to evaluate the image quality. Through comprehensive experiments, we demonstrate the effectiveness of FEMs in accurate embedding mapping and face reconstruction.
Abstract:Concept Activation Vectors (CAVs) offer insights into neural network decision-making by linking human friendly concepts to the model's internal feature extraction process. However, when a new set of CAVs is discovered, they must still be translated into a human understandable description. For image-based neural networks, this is typically done by visualizing the most relevant images of a CAV, while the determination of the concept is left to humans. In this work, we introduce an approach to aid the interpretation of newly discovered concept sets by suggesting textual descriptions for each CAV. This is done by mapping the most relevant images representing a CAV into a text-image embedding where a joint description of these relevant images can be computed. We propose utilizing the most relevant receptive fields instead of full images encoded. We demonstrate the capabilities of this approach in multiple experiments with and without given CAV labels, showing that the proposed approach provides accurate descriptions for the CAVs and reduces the challenge of concept interpretation.
Abstract:Understanding expressions is vital for deciphering human behavior, and nowadays, end-to-end trained black box models achieve high performance. Due to the black-box nature of these models, it is unclear how they behave when applied out-of-distribution. Specifically, these models show decreased performance for unilateral facial palsy patients. We hypothesize that one crucial factor guiding the internal decision rules is facial symmetry. In this work, we use insights from causal reasoning to investigate the hypothesis. After deriving a structural causal model, we develop a synthetic interventional framework. This approach allows us to analyze how facial symmetry impacts a network's output behavior while keeping other factors fixed. All 17 investigated expression classifiers significantly lower their output activations for reduced symmetry. This result is congruent with observed behavior on real-world data from healthy subjects and facial palsy patients. As such, our investigation serves as a case study for identifying causal factors that influence the behavior of black-box models.
Abstract:Physics-Informed Neural Networks (PINNs) have shown continuous and increasing promise in approximating partial differential equations (PDEs), although they remain constrained by the curse of dimensionality. In this paper, we propose a generalized PINN version of the classical variable separable method. To do this, we first show that, using the universal approximation theorem, a multivariate function can be approximated by the outer product of neural networks, whose inputs are separated variables. We leverage tensor decomposition forms to separate the variables in a PINN setting. By employing Canonic Polyadic (CP), Tensor-Train (TT), and Tucker decomposition forms within the PINN framework, we create robust architectures for learning multivariate functions from separate neural networks connected by outer products. Our methodology significantly enhances the performance of PINNs, as evidenced by improved results on complex high-dimensional PDEs, including the 3d Helmholtz and 5d Poisson equations, among others. This research underscores the potential of tensor decomposition-based variably separated PINNs to surpass the state-of-the-art, offering a compelling solution to the dimensionality challenge in PDE approximation.
Abstract:In this work, we leverage the pure skin color patch from the face image as the additional information to train an auxiliary skin color feature extractor and face recognition model in parallel to improve performance of state-of-the-art (SOTA) privacy-preserving face recognition (PPFR) systems. Our solution is robust against black-box attacking and well-established generative adversarial network (GAN) based image restoration. We analyze the potential risk in previous work, where the proposed cosine similarity computation might directly leak the protected precomputed embedding stored on the server side. We propose a Function Secret Sharing (FSS) based face embedding comparison protocol without any intermediate result leakage. In addition, we show in experiments that the proposed protocol is more efficient compared to the Secret Sharing (SS) based protocol.