Abstract:With the increasing demand for multi-carrier communication in high-mobility scenarios, it is urgent to design new multi-carrier communication waveforms that can resist large delay-Doppler spreads. Various multi-carrier waveforms in the transform domain were proposed for the fast time-varying channels, including orthogonal time frequency space (OTFS), orthogonal chirp division multiplexing (OCDM), and affine frequency division multiplexing (AFDM). Among these, the AFDM is a strong candidate for its low implementation complexity and ability to achieve optimal diversity. This paper unifies the waveforms based on the discrete affine Fourier transform (DAFT) by using the chirp slope factor "k" in the time-frequency representation to construct a unified design framework for high-mobility communications. The design framework is employed to verify that the bit error rate performance of the DAFT-based waveform can be enhanced when the signal-to-noise ratio (SNR) is sufficiently high by adjusting the chirp slope factor "k".
Abstract:Affine frequency division multiplexing (AFDM) is a recently proposed communication waveform for time-varying channel scenarios. As a chirp-based multicarrier modulation technique it can not only satisfy the needs of multiple scenarios in future mobile communication networks but also achieve good performance in radar sensing by adjusting the built-in parameters, making it a promising air interface waveform in integrated sensing and communication (ISAC) applications. In this paper, we investigate an AFDM-based radar system and analyze the radar ambiguity function of AFDM with different built-in parameters, based on which we find an AFDM waveform with the specific parameter c2 owns the near-optimal time-domain ambiguity function. Then a low-complexity algorithm based on matched filtering for high-resolution target range estimation is proposed for this specific AFDM waveform. Through simulation and analysis, the specific AFDM waveform has near-optimal range estimation performance with the proposed low-complexity algorithm while having the same bit error rate (BER) performance as orthogonal time frequency space (OTFS) using simple linear minimum mean square error (LMMSE) equalizer.
Abstract:Integrated sensing and communication (ISAC) is considered as a promising solution for improving spectrum efficiency and relieving wireless spectrum congestion. This paper systematically introduces the evolutionary path of ISAC technologies, then sorts out and summarizes the current research status of ISAC resource allocation. From the perspective of different integrated levels of ISAC, we introduce and elaborate the research progress of resource allocation in different stages, namely, resource separated, orthogonal, converged, and collaborative stages. In addition, we give in-depth consideration to propose a new resource allocation framework from a multi-granularity perspective. Finally, we demonstrate the feasibility of our proposed framework with a case of full-duplex ISAC system.
Abstract:In the high-mobility scenarios of next-generation wireless communication systems (beyond 5G/6G), the performance of orthogonal frequency division multiplexing (OFDM) deteriorates drastically due to the loss of orthogonality between the subcarriers caused by large Doppler frequency shifts. Various emerging waveforms have been proposed for fast time-varying channels with excellent results. In this paper, we classify these waveforms from the perspective of their modulation domain and establish a unified framework to provide a comprehensive system structure comparison. Then we analyze bit error rate (BER) performance of each waveform in doubly selective channels. Through the discussions on their complexity and compatibility with OFDM systems, we finally give the candidate waveform suggestions.