Abstract:Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a longstanding challenge. This issue has been escalated due to the denser network deployment, larger antenna arrays, and wider bandwidth in 5G and beyond networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting. WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. Notably, with a small number of measurements, WRF-GS can synthesize new spatial spectra within milliseconds for a given scene, thereby enabling latency-sensitive applications. Experimental results demonstrate that WRF-GS outperforms existing methods for spatial spectrum synthesis, such as ray tracing and other deep-learning approaches. Moreover, WRF-GS achieves superior performance in the channel state information prediction task, surpassing existing methods by a significant margin of more than 2.43 dB.
Abstract:Wireless networks are increasingly facing challenges due to their expanding scale and complexity. These challenges underscore the need for advanced AI-driven strategies, particularly in the upcoming 6G networks. In this article, we introduce WirelessAgent, a novel approach leveraging large language models (LLMs) to develop AI agents capable of managing complex tasks in wireless networks. It can effectively improve network performance through advanced reasoning, multimodal data processing, and autonomous decision making. Thereafter, we demonstrate the practical applicability and benefits of WirelessAgent for network slicing management. The experimental results show that WirelessAgent is capable of accurately understanding user intent, effectively allocating slice resources, and consistently maintaining optimal performance.
Abstract:Restless multi-armed bandits (RMABs) have been widely utilized to address resource allocation problems with Markov reward processes (MRPs). Existing works often assume that the dynamics of MRPs are known prior, which makes the RMAB problem solvable from an optimization perspective. Nevertheless, an efficient learning-based solution for RMABs with unknown system dynamics remains an open problem. In this paper, we study the cooperative resource allocation problem with unknown system dynamics of MRPs. This problem can be modeled as a multi-agent online RMAB problem, where multiple agents collaboratively learn the system dynamics while maximizing their accumulated rewards. We devise a federated online RMAB framework to mitigate the communication overhead and data privacy issue by adopting the federated learning paradigm. Based on this framework, we put forth a Federated Thompson Sampling-enabled Whittle Index (FedTSWI) algorithm to solve this multi-agent online RMAB problem. The FedTSWI algorithm enjoys a high communication and computation efficiency, and a privacy guarantee. Moreover, we derive a regret upper bound for the FedTSWI algorithm. Finally, we demonstrate the effectiveness of the proposed algorithm on the case of online multi-user multi-channel access. Numerical results show that the proposed algorithm achieves a fast convergence rate of $\mathcal{O}(\sqrt{T\log(T)})$ and better performance compared with baselines. More importantly, its sample complexity decreases with the number of agents.
Abstract:This paper considers a resource allocation problem where several Internet-of-Things (IoT) devices send data to a base station (BS) with or without the help of the reconfigurable intelligent surface (RIS) assisted cellular network. The objective is to maximize the sum rate of all IoT devices by finding the optimal RIS and spreading factor (SF) for each device. Since these IoT devices lack prior information on the RISs or the channel state information (CSI), a distributed resource allocation framework with low complexity and learning features is required to achieve this goal. Therefore, we model this problem as a two-stage multi-player multi-armed bandit (MPMAB) framework to learn the optimal RIS and SF sequentially. Then, we put forth an exploration and exploitation boosting (E2Boost) algorithm to solve this two-stage MPMAB problem by combining the $\epsilon$-greedy algorithm, Thompson sampling (TS) algorithm, and non-cooperation game method. We derive an upper regret bound for the proposed algorithm, i.e., $\mathcal{O}(\log^{1+\delta}_2 T)$, increasing logarithmically with the time horizon $T$. Numerical results show that the E2Boost algorithm has the best performance among the existing methods and exhibits a fast convergence rate. More importantly, the proposed algorithm is not sensitive to the number of combinations of the RISs and SFs thanks to the two-stage allocation mechanism, which can benefit high-density networks.
Abstract:The rapid evolution of wireless technologies and the growing complexity of network infrastructures necessitate a paradigm shift in how communication networks are designed, configured, and managed. Recent advancements in Large Language Models (LLMs) have sparked interest in their potential to revolutionize wireless communication systems. However, existing studies on LLMs for wireless systems are limited to a direct application for telecom language understanding. To empower LLMs with knowledge and expertise in the wireless domain, this paper proposes WirelessLLM, a comprehensive framework for adapting and enhancing LLMs to address the unique challenges and requirements of wireless communication networks. We first identify three foundational principles that underpin WirelessLLM: knowledge alignment, knowledge fusion, and knowledge evolution. Then, we investigate the enabling technologies to build WirelessLLM, including prompt engineering, retrieval augmented generation, tool usage, multi-modal pre-training, and domain-specific fine-tuning. Moreover, we present three case studies to demonstrate the practical applicability and benefits of WirelessLLM for solving typical problems in wireless networks. Finally, we conclude this paper by highlighting key challenges and outlining potential avenues for future research.
Abstract:As the cloud is pushed to the edge of the network, resource allocation for user experience improvement in mobile edge clouds (MEC) is increasingly important and faces multiple challenges. This paper studies quality of experience (QoE)-oriented resource allocation in MEC while considering user diversity, limited resources, and the complex relationship between allocated resources and user experience. We introduce a closed-loop online resource allocation (CORA) framework to tackle this problem. It learns the objective function of resource allocation from the historical dataset and updates the learned model using the online testing results. Due to the learned objective model is typically non-convex and challenging to solve in real-time, we leverage the Lyapunov optimization to decouple the long-term average constraint and apply the prime-dual method to solve this decoupled resource allocation problem. Thereafter, we put forth a data-driven optimal online queue resource allocation (OOQRA) algorithm and a data-driven robust OQRA (ROQRA) algorithm for homogenous and heterogeneous user cases, respectively. Moreover, we provide a rigorous convergence analysis for the OOQRA algorithm. We conduct extensive experiments to evaluate the proposed algorithms using the synthesis and YouTube datasets. Numerical results validate the theoretical analysis and demonstrate that the user complaint rate is reduced by up to 100% and 18% in the synthesis and YouTube datasets, respectively.
Abstract:Federated learning (FL) is an appealing paradigm for learning a global model among distributed clients while preserving data privacy. Driven by the demand for high-quality user experiences, evaluating the well-trained global model after the FL process is crucial. In this paper, we propose a closed-loop model analytics framework that allows for effective evaluation of the trained global model using clients' local data. To address the challenges posed by system and data heterogeneities in the FL process, we study a goal-directed client selection problem based on the model analytics framework by selecting a subset of clients for the model training. This problem is formulated as a stochastic multi-armed bandit (SMAB) problem. We first put forth a quick initial upper confidence bound (Quick-Init UCB) algorithm to solve this SMAB problem under the federated analytics (FA) framework. Then, we further propose a belief propagation-based UCB (BP-UCB) algorithm under the democratized analytics (DA) framework. Moreover, we derive two regret upper bounds for the proposed algorithms, which increase logarithmically over the time horizon. The numerical results demonstrate that the proposed algorithms achieve nearly optimal performance, with a gap of less than 1.44% and 3.12% under the FA and DA frameworks, respectively.