Abstract:In recent years, modeling evolving knowledge over temporal knowledge graphs (TKGs) has become a heated topic. Various methods have been proposed to forecast links on TKGs. Most of them are embedding-based, where hidden representations are learned to represent knowledge graph (KG) entities and relations based on the observed graph contexts. Although these methods show strong performance on traditional TKG forecasting (TKGF) benchmarks, they naturally face a strong challenge when they are asked to model the unseen zero-shot relations that has no prior graph context. In this paper, we try to mitigate this problem as follows. We first input the text descriptions of KG relations into large language models (LLMs) for generating relation representations, and then introduce them into embedding-based TKGF methods. LLM-empowered representations can capture the semantic information in the relation descriptions. This makes the relations, whether seen or unseen, with similar semantic meanings stay close in the embedding space, enabling TKGF models to recognize zero-shot relations even without any observed graph context. Experimental results show that our approach helps TKGF models to achieve much better performance in forecasting the facts with previously unseen relations, while still maintaining their ability in link forecasting regarding seen relations.
Abstract:Stemming from traditional knowledge graphs (KGs), hyper-relational KGs (HKGs) provide additional key-value pairs (i.e., qualifiers) for each KG fact that help to better restrict the fact validity. In recent years, there has been an increasing interest in studying graph reasoning over HKGs. In the meantime, due to the ever-evolving nature of world knowledge, extensive parallel works have been focusing on reasoning over temporal KGs (TKGs), where each TKG fact can be viewed as a KG fact coupled with a timestamp (or time period) specifying its time validity. The existing HKG reasoning approaches do not consider temporal information because it is not explicitly specified in previous benchmark datasets. Besides, all the previous TKG reasoning methods only lay emphasis on temporal reasoning and have no way to learn from qualifiers. To this end, we aim to fill the gap between TKG reasoning and HKG reasoning. We develop two new benchmark hyper-relational TKG (HTKG) datasets, i.e., Wiki-hy and YAGO-hy, and propose a HTKG reasoning model that efficiently models both temporal facts and qualifiers. We further exploit additional time-invariant relational knowledge from the Wikidata knowledge base and study its effectiveness in HTKG reasoning. Time-invariant relational knowledge serves as the knowledge that remains unchanged in time (e.g., Sasha Obama is the child of Barack Obama), and it has never been fully explored in previous TKG reasoning benchmarks and approaches. Experimental results show that our model substantially outperforms previous related methods on HTKG link prediction and can be enhanced by jointly leveraging both temporal and time-invariant relational knowledge.
Abstract:Temporal knowledge graph completion (TKGC) aims to predict the missing links among the entities in a temporal knwoledge graph (TKG). Most previous TKGC methods only consider predicting the missing links among the entities seen in the training set, while they are unable to achieve great performance in link prediction concerning newly-emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed, where TKGC models are required to achieve great link prediction performance concerning newly-emerged entities that only have few-shot observed examples. In this work, we propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task. In FITCARL, an agent traverses through the whole TKG to search for the prediction answer. A policy network is designed to guide the search process based on the traversed path. To better address the data scarcity problem in the few-shot setting, we introduce a module that computes the confidence of each candidate action and integrate it into the policy for action selection. We also exploit the entity concept information with a novel concept regularizer to boost model performance. Experimental results show that FITCARL achieves stat-of-the-art performance on TKG few-shot OOG link prediction.
Abstract:Knowledge graph completion (KGC) aims to predict the missing links among knowledge graph (KG) entities. Though various methods have been developed for KGC, most of them can only deal with the KG entities seen in the training set and cannot perform well in predicting links concerning novel entities in the test set. Similar problem exists in temporal knowledge graphs (TKGs), and no previous temporal knowledge graph completion (TKGC) method is developed for modeling newly-emerged entities. Compared to KGs, TKGs require temporal reasoning techniques for modeling, which naturally increases the difficulty in dealing with novel, yet unseen entities. In this work, we focus on the inductive learning of unseen entities' representations on TKGs. We propose a few-shot out-of-graph (OOG) link prediction task for TKGs, where we predict the missing entities from the links concerning unseen entities by employing a meta-learning framework and utilizing the meta-information provided by only few edges associated with each unseen entity. We construct three new datasets for TKG few-shot OOG link prediction, and we propose a model that mines the concept-aware information among entities. Experimental results show that our model achieves superior performance on all three datasets and our concept-aware modeling component demonstrates a strong effect.
Abstract:Question answering over temporal knowledge graphs (TKGQA) has recently found increasing interest. TKGQA requires temporal reasoning techniques to extract the relevant information from temporal knowledge bases. The only existing TKGQA dataset, i.e., CronQuestions, consists of temporal questions based on the facts from a fixed time period, where a temporal knowledge graph (TKG) spanning the same period can be fully used for answer inference, allowing the TKGQA models to use even the future knowledge to answer the questions based on the past facts. In real-world scenarios, however, it is also common that given the knowledge until now, we wish the TKGQA systems to answer the questions asking about the future. As humans constantly seek plans for the future, building TKGQA systems for answering such forecasting questions is important. Nevertheless, this has still been unexplored in previous research. In this paper, we propose a novel task: forecasting question answering over temporal knowledge graphs. We also propose a large-scale TKGQA benchmark dataset, i.e., ForecastTKGQuestions, for this task. It includes three types of questions, i.e., entity prediction, yes-no, and fact reasoning questions. For every forecasting question in our dataset, QA models can only have access to the TKG information before the timestamp annotated in the given question for answer inference. We find that the state-of-the-art TKGQA methods perform poorly on forecasting questions, and they are unable to answer yes-no questions and fact reasoning questions. To this end, we propose ForecastTKGQA, a TKGQA model that employs a TKG forecasting module for future inference, to answer all three types of questions. Experimental results show that ForecastTKGQA outperforms recent TKGQA methods on the entity prediction questions, and it also shows great effectiveness in answering the other two types of questions.