Abstract:The rapid progress in Deep Learning (DL) and Large Language Models (LLMs) has exponentially increased demands of computational power and bandwidth. This, combined with the high costs of faster computing chips and interconnects, has significantly inflated High Performance Computing (HPC) construction costs. To address these challenges, we introduce the Fire-Flyer AI-HPC architecture, a synergistic hardware-software co-design framework and its best practices. For DL training, we deployed the Fire-Flyer 2 with 10,000 PCIe A100 GPUs, achieved performance approximating the DGX-A100 while reducing costs by half and energy consumption by 40%. We specifically engineered HFReduce to accelerate allreduce communication and implemented numerous measures to keep our Computation-Storage Integrated Network congestion-free. Through our software stack, including HaiScale, 3FS, and HAI-Platform, we achieved substantial scalability by overlapping computation and communication. Our system-oriented experience from DL training provides valuable insights to drive future advancements in AI-HPC.
Abstract:The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
Abstract:Cross-domain few-shot hyperspectral image classification focuses on learning prior knowledge from a large number of labeled samples from source domain and then transferring the knowledge to the tasks which contain only few labeled samples in target domains. Following the metric-based manner, many current methods first extract the features of the query and support samples, and then directly predict the classes of query samples according to their distance to the support samples or prototypes. The relations between samples have not been fully explored and utilized. Different from current works, this paper proposes to learn sample relations from different views and take them into the model learning process, to improve the cross-domain few-shot hyperspectral image classification. Building on current DCFSL method which adopts a domain discriminator to deal with domain-level distribution difference, the proposed method applys contrastive learning to learn the class-level sample relations to obtain more discriminable sample features. In addition, it adopts a transformer based cross-attention learning module to learn the set-level sample relations and acquire the attentions from query samples to support samples. Our experimental results have demonstrated the contribution of the multi-view relation learning mechanism for few-shot hyperspectral image classification when compared with the state of the art methods.