Abstract:Digital Image Correlation (DIC) is an optical technique that measures displacement and strain by tracking pattern movement in a sequence of captured images during testing. DIC has gained recognition in asphalt pavement engineering since the early 2000s. However, users often perceive the DIC technique as an out-of-box tool and lack a thorough understanding of its operational and measurement principles. This article presents a state-of-art review of DIC as a crucial tool for laboratory testing of asphalt concrete (AC), primarily focusing on the widely utilized 2D-DIC and 3D-DIC techniques. To address frequently asked questions from users, the review thoroughly examines the optimal methods for preparing speckle patterns, configuring single-camera or dual-camera imaging systems, conducting DIC analyses, and exploring various applications. Furthermore, emerging DIC methodologies such as Digital Volume Correlation and deep-learning-based DIC are introduced, highlighting their potential for future applications in pavement engineering. The article also provides a comprehensive and reliable flowchart for implementing DIC in AC characterization. Finally, critical directions for future research are presented.
Abstract:Deep learning-based change detection using remote sensing images has received increasing attention in recent years. However, how to effectively extract and fuse the deep features of bi-temporal images to improve the accuracy of change detection is still a challenge. To address that, a novel adjacent-level feature fusion network with 3D convolution (named AFCF3D-Net) is proposed in this article. First, through the inner fusion property of 3D convolution, we design a new feature fusion way that can simultaneously extract and fuse the feature information from bi-temporal images. Then, in order to bridge the semantic gap between low-level features and high-level features, we propose an adjacent-level feature cross-fusion (AFCF) module to aggregate complementary feature information between the adjacent-levels. Furthermore, the densely skip connection strategy is introduced to improve the capability of pixel-wise prediction and compactness of changed objects in the results. Finally, the proposed AFCF3D-Net has been validated on the three challenging remote sensing change detection datasets: Wuhan building dataset (WHU-CD), LEVIR building dataset (LEVIR-CD), and Sun Yat-Sen University (SYSU-CD). The results of quantitative analysis and qualitative comparison demonstrate that the proposed AFCF3D-Net achieves better performance compared to the other state-of-the-art change detection methods.
Abstract:In this letter, a novel method for change detection is proposed using neighborhood structure correlation. Because structure features are insensitive to the intensity differences between bi-temporal images, we perform the correlation analysis on structure features rather than intensity information. First, we extract the structure feature maps by using multi-orientated gradient information. Then, the structure feature maps are used to obtain the Neighborhood Structural Correlation Image (NSCI), which can represent the context structure information. In addition, we introduce a measure named matching error which can be used to improve neighborhood information. Subsequently, a change detection model based on the random forest is constructed. The NSCI feature and matching error are used as the model inputs for training and prediction. Finally, the decision tree voting is used to produce the change detection result. To evaluate the performance of the proposed method, it was compared with three state-of-the-art change detection methods. The experimental results on two datasets demonstrated the effectiveness and robustness of the proposed method.
Abstract:Over the past few decades, with the rapid development of global aerospace and aerial remote sensing technology, the types of sensors have evolved from the traditional monomodal sensors (e.g., optical sensors) to the new generation of multimodal sensors [e.g., multispectral, hyperspectral, light detection and ranging (LiDAR) and synthetic aperture radar (SAR) sensors]. These advanced devices can dynamically provide various and abundant multimodal remote sensing images with different spatial, temporal, and spectral resolutions according to different application requirements. Since then, it is of great scientific significance to carry out the research of multimodal remote sensing image registration, which is a crucial step for integrating the complementary information among multimodal data and making comprehensive observations and analysis of the Earths surface. In this work, we will present our own contributions to the field of multimodal image registration, summarize the advantages and limitations of existing multimodal image registration methods, and then discuss the remaining challenges and make a forward-looking prospect for the future development of the field.
Abstract:Automatically identifying feature correspondences between multimodal images is facing enormous challenges because of the significant differences both in radiation and geometry. To address these problems, we propose a novel feature matching method (named R2FD2) that is robust to radiation and rotation differences. Our R2FD2 is conducted in two critical contributions, consisting of a repeatable feature detector and a rotation-invariant feature descriptor. In the first stage, a repeatable feature detector called the Multi-channel Auto-correlation of the Log-Gabor (MALG) is presented for feature detection, which combines the multi-channel auto-correlation strategy with the Log-Gabor wavelets to detect interest points (IPs) with high repeatability and uniform distribution. In the second stage, a rotation-invariant feature descriptor is constructed, named the Rotation-invariant Maximum index map of the Log-Gabor (RMLG), which consists of two components: fast assignment of dominant orientation and construction of feature representation. In the process of fast assignment of dominant orientation, a Rotation-invariant Maximum Index Map (RMIM) is built to address rotation deformations. Then, the proposed RMLG incorporates the rotation-invariant RMIM with the spatial configuration of DAISY to depict a more discriminative feature representation, which improves RMLG's resistance to radiation and rotation variances.Experimental results show that the proposed R2FD2 outperforms five state-of-the-art feature matching methods, and has superior advantages in adaptability and universality. Moreover, our R2FD2 achieves the accuracy of matching within two pixels and has a great advantage in matching efficiency over other state-of-the-art methods.