Abstract:Two-dimensional digital image correlation (2D-DIC) is a widely used optical technique to measure displacement and strain during asphalt concrete (AC) testing. An accurate 2-D DIC measurement can only be achieved when the camera's principal axis is perpendicular to the planar specimen surface. However, this requirement may not be met during testing due to device constraints. This paper proposes a simple and reliable method to correct errors induced by non-perpendicularity. The method is based on image feature matching and rectification. No additional equipment is needed. A theoretical error analysis was conducted to quantify the effect of a non-perpendicular camera alignment on measurement accuracy. The proposed method was validated numerically using synthetic images and experimentally in an AC fracture test. It achieved relatively high accuracy, even under considerable camera rotation angle and large deformation. As a pre-processing technique, the proposed method showed promising performance in assisting the recently developed CrackPropNet for automated crack propagation measurement under a non-perpendicular camera alignment.
Abstract:Digital Image Correlation (DIC) is an optical technique that measures displacement and strain by tracking pattern movement in a sequence of captured images during testing. DIC has gained recognition in asphalt pavement engineering since the early 2000s. However, users often perceive the DIC technique as an out-of-box tool and lack a thorough understanding of its operational and measurement principles. This article presents a state-of-art review of DIC as a crucial tool for laboratory testing of asphalt concrete (AC), primarily focusing on the widely utilized 2D-DIC and 3D-DIC techniques. To address frequently asked questions from users, the review thoroughly examines the optimal methods for preparing speckle patterns, configuring single-camera or dual-camera imaging systems, conducting DIC analyses, and exploring various applications. Furthermore, emerging DIC methodologies such as Digital Volume Correlation and deep-learning-based DIC are introduced, highlighting their potential for future applications in pavement engineering. The article also provides a comprehensive and reliable flowchart for implementing DIC in AC characterization. Finally, critical directions for future research are presented.
Abstract:The conventional surface reflection method has been widely used to measure the asphalt pavement layer dielectric constant using ground-penetrating radar (GPR). This method may be inaccurate for in-service pavement thickness estimation with dielectric constant variation through the depth, which could be addressed using the extended common mid-point method (XCMP) with air-coupled GPR antennas. However, the factors affecting the XCMP method on thickness prediction accuracy haven't been studied. Manual acquisition of key factors is required, which hinders its real-time applications. This study investigates the affecting factors and develops a modified XCMP method to allow automatic thickness prediction of in-service asphalt pavement with non-uniform dielectric properties through depth. A sensitivity analysis was performed, necessitating the accurate estimation of time of flights (TOFs) from antenna pairs. A modified XCMP method based on edge detection was proposed to allow real-time TOFs estimation, then dielectric constant and thickness predictions. Field tests using a multi-channel GPR system were performed for validation. Both the surface reflection and XCMP setups were conducted. Results show that the modified XCMP method is recommended with a mean prediction error of 1.86%, which is more accurate than the surface reflection method (5.73%).
Abstract:Cracking is a common failure mode in asphalt concrete (AC) pavements. Many tests have been developed to characterize the fracture behavior of AC. Accurate crack detection during testing is crucial to describe AC fracture behavior. This paper proposed a framework to detect surface cracks in AC specimens using two-dimensional digital image correlation (DIC). Two significant drawbacks in previous research in this field were addressed. First, a multi-seed incremental reliability-guided DIC was proposed to solve the decorrelation issue due to large deformation and discontinuities. The method was validated using synthetic deformed images. A correctly implemented analysis could accurately measure strains up to 450\%, even with significant discontinuities (cracks) present in the deformed image. Second, a robust method was developed to detect cracks based on displacement fields. The proposed method uses critical crack tip opening displacement ($\delta_c$) to define the onset of cleavage fracture. The proposed method relies on well-developed fracture mechanics theory. The proposed threshold $\delta_c$ has a physical meaning and can be easily determined from DIC measurement. The method was validated using an extended finite element model. The framework was implemented to measure the crack propagation rate while conducting the Illinois-flexibility index test on two AC mixes. The calculated rates could distinguish mixes based on their cracking potential. The proposed framework could be applied to characterize AC cracking phenomenon, evaluate its fracture properties, assess asphalt mixture testing protocols, and develop theoretical models.
Abstract:This article proposes a deep neural network, namely CrackPropNet, to measure crack propagation on asphalt concrete (AC) specimens. It offers an accurate, flexible, efficient, and low-cost solution for crack propagation measurement using images collected during cracking tests. CrackPropNet significantly differs from traditional deep learning networks, as it involves learning to locate displacement field discontinuities by matching features at various locations in the reference and deformed images. An image library representing the diversified cracking behavior of AC was developed for supervised training. CrackPropNet achieved an optimal dataset scale F-1 of 0.755 and optimal image scale F-1 of 0.781 on the testing dataset at a running speed of 26 frame-per-second. Experiments demonstrated that low to medium-level Gaussian noises had a limited impact on the measurement accuracy of CrackPropNet. Moreover, the model showed promising generalization on fundamentally different images. As a crack measurement technique, the CrackPropNet can detect complex crack patterns accurately and efficiently in AC cracking tests. It can be applied to characterize the cracking phenomenon, evaluate AC cracking potential, validate test protocols, and verify theoretical models.