Abstract:Two-dimensional digital image correlation (2D-DIC) is a widely used optical technique to measure displacement and strain during asphalt concrete (AC) testing. An accurate 2-D DIC measurement can only be achieved when the camera's principal axis is perpendicular to the planar specimen surface. However, this requirement may not be met during testing due to device constraints. This paper proposes a simple and reliable method to correct errors induced by non-perpendicularity. The method is based on image feature matching and rectification. No additional equipment is needed. A theoretical error analysis was conducted to quantify the effect of a non-perpendicular camera alignment on measurement accuracy. The proposed method was validated numerically using synthetic images and experimentally in an AC fracture test. It achieved relatively high accuracy, even under considerable camera rotation angle and large deformation. As a pre-processing technique, the proposed method showed promising performance in assisting the recently developed CrackPropNet for automated crack propagation measurement under a non-perpendicular camera alignment.
Abstract:Cracking is a common failure mode in asphalt concrete (AC) pavements. Many tests have been developed to characterize the fracture behavior of AC. Accurate crack detection during testing is crucial to describe AC fracture behavior. This paper proposed a framework to detect surface cracks in AC specimens using two-dimensional digital image correlation (DIC). Two significant drawbacks in previous research in this field were addressed. First, a multi-seed incremental reliability-guided DIC was proposed to solve the decorrelation issue due to large deformation and discontinuities. The method was validated using synthetic deformed images. A correctly implemented analysis could accurately measure strains up to 450\%, even with significant discontinuities (cracks) present in the deformed image. Second, a robust method was developed to detect cracks based on displacement fields. The proposed method uses critical crack tip opening displacement ($\delta_c$) to define the onset of cleavage fracture. The proposed method relies on well-developed fracture mechanics theory. The proposed threshold $\delta_c$ has a physical meaning and can be easily determined from DIC measurement. The method was validated using an extended finite element model. The framework was implemented to measure the crack propagation rate while conducting the Illinois-flexibility index test on two AC mixes. The calculated rates could distinguish mixes based on their cracking potential. The proposed framework could be applied to characterize AC cracking phenomenon, evaluate its fracture properties, assess asphalt mixture testing protocols, and develop theoretical models.
Abstract:This article proposes a deep neural network, namely CrackPropNet, to measure crack propagation on asphalt concrete (AC) specimens. It offers an accurate, flexible, efficient, and low-cost solution for crack propagation measurement using images collected during cracking tests. CrackPropNet significantly differs from traditional deep learning networks, as it involves learning to locate displacement field discontinuities by matching features at various locations in the reference and deformed images. An image library representing the diversified cracking behavior of AC was developed for supervised training. CrackPropNet achieved an optimal dataset scale F-1 of 0.755 and optimal image scale F-1 of 0.781 on the testing dataset at a running speed of 26 frame-per-second. Experiments demonstrated that low to medium-level Gaussian noises had a limited impact on the measurement accuracy of CrackPropNet. Moreover, the model showed promising generalization on fundamentally different images. As a crack measurement technique, the CrackPropNet can detect complex crack patterns accurately and efficiently in AC cracking tests. It can be applied to characterize the cracking phenomenon, evaluate AC cracking potential, validate test protocols, and verify theoretical models.